Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2015_22_4_a3, author = {A. V. Kel'manov and V. I. Khandeev}, title = {An exact pseudopolynomial algorithm for a~bi-partitioning problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {50--62}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2015_22_4_a3/} }
TY - JOUR AU - A. V. Kel'manov AU - V. I. Khandeev TI - An exact pseudopolynomial algorithm for a~bi-partitioning problem JO - Diskretnyj analiz i issledovanie operacij PY - 2015 SP - 50 EP - 62 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2015_22_4_a3/ LA - ru ID - DA_2015_22_4_a3 ER -
A. V. Kel'manov; V. I. Khandeev. An exact pseudopolynomial algorithm for a~bi-partitioning problem. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 4, pp. 50-62. http://geodesic.mathdoc.fr/item/DA_2015_22_4_a3/
[1] A. A. Ageev, A. V. Kel'manov, A. V. Pyatkin, “NP-hardness of the Euclidean max-cut problem”, Dokl. Math., 89:3 (2014), 343–345 | DOI | DOI | MR | Zbl
[2] A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, A. V. Pyatkin, “The problem of finding a subset of vectors with the maximum total weight”, J. Appl. Ind. Math., 2:1 (2008), 32–38 | DOI | MR | Zbl
[3] A. E. Galashov, A. V. Kel'manov, “A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets”, Autom. Remote Control, 75:4 (2014), 595–606 | DOI | MR | Zbl
[4] E. Kh. Gimadi, Yu. V. Glazkov, I. A. Rykov, “On two problems of choosing some subset of vectors with integer coordinates that has maximum norm of the sum of elements in an Euclidean space”, J. Appl. Ind. Math., 3:3 (2009), 343–352 | DOI | MR | Zbl
[5] E. Kh. Gimadi, A. V. Kel'manov, M. A. Kel'manova, S. A. Khamidullin, “A posteriori detection of a quasiperiodic fragment with a given number of repetitions in a numerical sequence”, Sib. Zh. Ind. Mat., 9:1 (2006), 55–74 | MR | Zbl
[6] E. Kh. Gimadi, A. V. Pyatkin, I. A. Rykov, “On polynomial solvability of some problems of a vector subset choice in a Euclidean space of fixed dimension”, J. Appl. Ind. Math., 4:1 (2010), 48–53 | DOI | MR | Zbl
[7] A. V. Dolgushev, A. V. Kel'manov, “On the algorithmic complexity of a problem in cluster analysis”, J. Appl. Ind. Math., 5:2 (2011), 191–194 | DOI | MR | Zbl
[8] A. V. Dolgushev, A. V. Kel'manov, “An approximation algorithm for solving a problem of cluster analysis”, J. Appl. Ind. Math., 5:4 (2011), 551–558 | DOI | MR | Zbl
[9] A. V. Dolgushev, A. V. Kel'manov, V. V. Shenmaier, “A polynomial approximation scheme for a problem of cluster analysis”, Doklady 9th Int. Conf. “Intellectualization of Information Processing” (Budva, Montenegro, Sept. 16–22, 2012), Torus Press, Moscow, 2012, 242–244
[10] I. I. Eremin, E. Kh. Gimadi, A. V. Kel'manov, A. V. Pyatkin, M. Yu. Khachai, “2-Approximation algorithm for finding a clique with minimum weight of vertices and edges”, Proc. Steklov Inst. Math., 284, Suppl. 1, 2014, S87–S95 | DOI | Zbl
[11] A. V. Kel'manov, “Off-line detection of a quasi-periodically recurring fragment in a numerical sequence”, Proc. Steklov Inst. Math., 263, Suppl. 2, 2008, S84–S92 | MR | Zbl
[12] A. V. Kel'manov, “On the complexity of some data analysis problems”, Comput. Math. Math. Phys., 50:11 (2010), 1941–1947 | DOI | MR | Zbl
[13] A. V. Kel'manov, “On the complexity of some cluster analysis problems”, Comput. Math. Math. Phys., 51:11 (2011), 1983–1988 | DOI | MR | Zbl
[14] A. V. Kel'manov, A. V. Pyatkin, “On the complexity of a search for a subset of “similar” vectors”, Dokl. Math., 78:1 (2008), 574–575 | DOI | MR | Zbl
[15] A. V. Kel'manov, A. V. Pyatkin, “Complexity of certain problems of searching for subsets of vectors and cluster analysis”, Comput. Math. Math. Phys., 49:11 (2009), 1966–1971 | DOI | MR | Zbl
[16] A. V. Kel'manov, A. V. Pyatkin, “On complexity of some problems of cluster analysis of vector sequences”, J. Appl. Ind. Math., 7:3 (2013), 363–369 | DOI | MR | Zbl
[17] A. V. Kel'manov, S. M. Romanchenko, S. A. Khamidullin, “Accurate pseudopolynomial-time algorithms for some NP-hard problems of searching for a vector subsequence”, Zh. Vychisl. Mat. Mat. Fiz., 53:1 (2013), 143–153 | DOI | Zbl
[18] A. V. Kel'manov, V. I. Khandeev, “A 2-approximation polynomial algorithm for a clustering problem”, J. Appl. Ind. Math., 7:4 (2013), 515–521 | DOI | MR | Zbl
[19] A. V. Kel'manov, V. I. Khandeev, “A randomized algorithm for two-cluster partition of a set of vectors”, Comput. Math. Math. Phys., 55:2 (2015), 330–339 | DOI | DOI | MR | Zbl
[20] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Mach. Learn., 75:2 (2009), 245–248 | DOI
[21] Jain A. K., “Data clustering: 50 years beyond $K$-means”, Pattern Recognit. Lett., 31:8 (2010), 651–666 | DOI
[22] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, CA, 1979, 314 pp. | MR | Zbl
[23] Hansen P., Jaumard B., “Cluster analysis and mathematical programming”, Math. Program., Ser. A, 79 (1997), 191–215 | MR | Zbl
[24] Hansen P., Jaumard B., Mladenovich N., “Minimum sum of squares clustering in a low dimensional space”, J. Classif., 15:1 (1998), 37–55 | DOI | MR | Zbl
[25] Inaba M., Katoh N., Imai H., “Applications of weighted Voronoi diagrams and randomization to variance-based $k$-clustering”, Proc. 10th Symp. Comput. Geom. (Stony Brook, NY, June 6–8, 1994), ACM, New York, 1995, 332–339
[26] MacQueen J. B., “Some methods for classification and analysis of multivariate observations”, Proc. 5th Berkeley Symp. Math. Stat. Probab., v. 1, Univ. California Press, Berkeley, CA, 1967, 281–297 | MR | Zbl
[27] Rao M. R., “Cluster analysis and mathematical programming”, J. Amer. Stat. Assoc., 66 (1971), 622–626 | DOI | Zbl