The complexity of the project scheduling problem with credits
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 4, pp. 35-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the profit maximization problem in calendar planning of investment projects taking into account reinvesting of the obtained revenue and possible credit financing. We construct corresponding models and study characteristics of these models. Strong NP-hardness of the profit maximization problem is proved when the amount of the used credits is not limited. Bibliogr. 11.
Keywords: project scheduling, investment project, NPV criterion, credit.
@article{DA_2015_22_4_a2,
     author = {E. A. Kazakovtseva and V. V. Servakh},
     title = {The complexity of the project scheduling problem with credits},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {35--49},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2015_22_4_a2/}
}
TY  - JOUR
AU  - E. A. Kazakovtseva
AU  - V. V. Servakh
TI  - The complexity of the project scheduling problem with credits
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2015
SP  - 35
EP  - 49
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2015_22_4_a2/
LA  - ru
ID  - DA_2015_22_4_a2
ER  - 
%0 Journal Article
%A E. A. Kazakovtseva
%A V. V. Servakh
%T The complexity of the project scheduling problem with credits
%J Diskretnyj analiz i issledovanie operacij
%D 2015
%P 35-49
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2015_22_4_a2/
%G ru
%F DA_2015_22_4_a2
E. A. Kazakovtseva; V. V. Servakh. The complexity of the project scheduling problem with credits. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 4, pp. 35-49. http://geodesic.mathdoc.fr/item/DA_2015_22_4_a2/

[1] E. Kh. Gimadi, V. V. Zalyubovskiy, S. V. Sevastyanov, “Polynomial solvability of scheduling problems with storable resources and directive deadlines,”, J. Appl. Ind. Math., 1:4 (2007), 442–452 | DOI | MR | Zbl

[2] E. A. Kazakovtseva, V. V. Servakh, “Financing and reliability analysis for schedules in the project calendar planning problem”, Autom. Remote Control, 75:7 (2014), 1231–1240 | DOI | MR

[3] E. A. Kazakovtseva, V. V. Servakh, “NP-hardness of the project scheduling problem with credits”, Abstr. XVI Baikal Int. School-Seminar “Optimization Methods and Their Applications” (Olkhon, Irkutsk Reg., Russia, June 30 – July 6, 2014), Inst. Sist. Energ. SO RAN, Irkutsk, 2014, 56

[4] E. A. Martynova, V. V. Servakh, “On scheduling credited projects”, Autom. Remote Control, 73:3 (2012), 508–516 | DOI | MR | Zbl

[5] E. A. Martynova, V. V. Servakh, “Optimizing the use of credits in the project scheduling problem”, Proc. Russian Conf. “Discrete Optimization and Operation Research” (Novosibirsk, Russia, June 24–28, 2013), Izd. Inst. Mat., Novosibirsk, 2013, 96

[6] V. V. Servakh, T. A. Shcherbinina, “Complexity of some project scheduling problem with nonrenewable resources”, Vestn. NGU, Ser. Mat., Mekh., Inform., 8:3 (2008), 105–112 | MR | Zbl

[7] Brucker P., Drexl A., Möhring R., Neumann K., Pesch E., “Resource-constrained project scheduling: Notation, classification, models, and methods”, Eur. J. Oper. Res., 112:1 (1999), 3–41 | DOI | Zbl

[8] Gimadi E. Kh., Sevastianov S. V., “On solvability of the project scheduling problem with accumulative resources of an arbitrary sign”, Oper. Res. Proc., Sel. Pap. Int. Conf. Oper. Res. (Klagenfurt, Sept. 2–5, 2002), Springer-Verl., Berlin, 2002, 241–246

[9] Möhring R. H., “Minimizing costs of resource requirements in project networks subject to a fixed completion time”, Oper. Res., 32:1 (1984), 89–120 | DOI | MR | Zbl

[10] J. Węglarz (ed.), Project scheduling: Recent models, algorithms, and applications, Int. Ser. Oper. Res. Manag. Sci., 14, Kluwer Acad. Publ., New York, 1999, 535 pp. | DOI

[11] Russell A. H., “Cash flows in networks”, Manage. Sci., 16:5 (1970), 357–373 | DOI | Zbl