Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2015_22_3_a0, author = {E. Kh. Gimadi and I. A. Rykov}, title = {A randomized algorithm for the vector subset problem with the maximal {Euclidean} norm of its sum}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--17}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2015_22_3_a0/} }
TY - JOUR AU - E. Kh. Gimadi AU - I. A. Rykov TI - A randomized algorithm for the vector subset problem with the maximal Euclidean norm of its sum JO - Diskretnyj analiz i issledovanie operacij PY - 2015 SP - 5 EP - 17 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2015_22_3_a0/ LA - ru ID - DA_2015_22_3_a0 ER -
%0 Journal Article %A E. Kh. Gimadi %A I. A. Rykov %T A randomized algorithm for the vector subset problem with the maximal Euclidean norm of its sum %J Diskretnyj analiz i issledovanie operacij %D 2015 %P 5-17 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2015_22_3_a0/ %G ru %F DA_2015_22_3_a0
E. Kh. Gimadi; I. A. Rykov. A randomized algorithm for the vector subset problem with the maximal Euclidean norm of its sum. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 3, pp. 5-17. http://geodesic.mathdoc.fr/item/DA_2015_22_3_a0/
[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Boston, 1974 | MR | MR | Zbl
[2] A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, A. V. Pyatkin, “The problem of finding a subset of vectors with the maximum total weight”, J. Appl. Ind. Math., 2:1 (2008), 32–38 | DOI | MR | Zbl
[3] E. Kh. Gimadi, N. I. Glebov, V. A. Perepelitsa, “Algorithms with estimates for discrete optimization problems”, Problems of Cybernetics, 31, ed. S. V. Yablonskii, Nauka, Moscow, 1976, 35–42
[4] E. Kh. Gimadi, A. V. Kel'manov, M. A. Kel'manova, S. A. Khamidullin, “A posteriori detection of a quasiperiodic fragment with a given number of repetitions in a numerical sequence”, Sib. Zh. Ind. Mat., 9:1 (2006), 55–74 | MR | Zbl
[5] E. Kh. Gimadi, A. V. Pyatkin, I. A. Rykov, “On polynomial solvability of some problems of a vector subset choice in a Euclidean space of fixed dimension”, J. Appl. Ind. Math., 4:1 (2010), 48–53 | DOI | MR | Zbl
[6] E. Kh. Gimadi, I. A. Rykov, “Approximation randomized algorithm for finding a vector subset with the maximal norm of sum in a Euclidean space”, Proc. Russian Conf. “Discrete Optimization and Operation Research” (Altay, Russia, June 27 – July 3, 2010), Izdatel'stvo Inst. Mat., Novosibirsk, 2010, 102
[7] E. Kh. Gimadi, I. A. Rykov, “Randomized algorithm for finding a vector subset with the maximal norm of sum in a Euclidean space”, Proc. XV Baikal Int. School-Seminar “Optimization Methods and Their Applications” (Listvyanka, Irkutsk Reg., Russia, June 23–29, 2011), v. 4, RIO IDSTU SO RAN, Irkutsk, 2011, 76–81
[8] A. V. Dolgushev, A. V. Kel'manov, “An approximation algorithm for solving a problem of cluster analysis”, J. Appl. Ind. Math., 5:4 (2011), 551–558 | DOI | MR | Zbl
[9] A. V. Dolgushev, A. V. Kel'manov, V. V. Shenmaier, “A polynomial approximation scheme for a problem of cluster analysis”, Proc. 9th Int. Conf. “Intellectualization of Information Processing” (Budva, Montenegro, Sept. 16–22, 2012), Torus Press, Moscow, 2012, 242–244
[10] A. V. Kel'manov, V. I. Khandeev, “A randomized algorithm for two-cluster partition of a set of vectors”, Comput. Math. Math. Phys., 55:2 (2015), 330–339 | DOI | DOI | MR | Zbl
[11] Bern M., Eppstein D., “Approximation algorithms for geometric problems”, Approximation algorithms for NP-hard problems, PWS Publ. Co., Boston, 1997, 296–345
[12] Bishop C. M., Pattern recognition and machine learning, Springer, New York, 2006, 738 pp. | MR | Zbl
[13] James G., Witten D., Hastie T., Tibshirani R., An introduction to statistical learning, Springer, New York, 2013, 426 pp. | MR | Zbl
[14] Jain A. K., “Data clustering: 50 years beyond $K$-means”, Pattern. Recognit. Lett., 31 (2010), 651–666 | DOI
[15] Flach P., Machine learning: The art and science of algorithms that make sense of data, Cambridge Univ. Press, New York, 2012, 396 pp. | MR | Zbl
[16] Huber G., “Notes: gamma function derivation of $n$-sphere volumes”, Amer. Math. Monthly, 89:5 (1982), 301–302 | DOI | MR
[17] MacQueen J. B., “Some methods for classification and analysis of multivariate observations”, Proc. 5th Berkeley Symp. Math. Stat. Probab., v. 1, Univ. California Press, Berkeley, CA, 1967, 281–297 | MR | Zbl
[18] Rao M. R., “Cluster analysis and mathematical programming”, J. Amer. Stat. Assoc., 66 (1971), 622–626 | DOI | Zbl