Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2015_22_1_a4, author = {A. V. Orlov}, title = {Numerical search for global solutions in problems of non-symmetric bilinear separability}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {64--85}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2015_22_1_a4/} }
TY - JOUR AU - A. V. Orlov TI - Numerical search for global solutions in problems of non-symmetric bilinear separability JO - Diskretnyj analiz i issledovanie operacij PY - 2015 SP - 64 EP - 85 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2015_22_1_a4/ LA - ru ID - DA_2015_22_1_a4 ER -
A. V. Orlov. Numerical search for global solutions in problems of non-symmetric bilinear separability. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 1, pp. 64-85. http://geodesic.mathdoc.fr/item/DA_2015_22_1_a4/
[1] V. N. Vapnik, Restoring Dependencies from Empirical Data, Nauka, Moscow, 1979 | MR | Zbl
[2] V. N. Vapnik, A. Ya. Chervonenkis, The Theory of Pattern Recognition, Nauka, Moscow, 1974 | MR | Zbl
[3] F. P. Vasiliev, Optimization Methods, Faktorial-Press, Moscow, 2002
[4] Yu. I. Zhuravlev, “On an algebraic approach to solving problems of recognition or classification”, Problems of Cybernetics, 33, ed. S. V. Yablonskii, Nauka, Moscow, 1978, 5–68 | Zbl
[5] A. V. Kel'manov, A. V. Pyatkin, “On complexity of some problems of cluster analysis of vector sequences”, J. Appl. Ind. Math., 7:3 (2013), 363–369 | DOI | MR
[6] A. V. Kel'manov, V. I. Khandeev, “A 2-approximation polynomial algorithm for a clustering problem”, J. Appl. Ind. Math., 7:4 (2013), 515–521 | DOI | MR
[7] V. D. Mazurov, The Committee Method in Problems of Optimization and Classification, Nauka, Moscow, 1990 | MR | Zbl
[8] V. D. Mazurov, M. Yu. Khachai, A. I. Rybin, “Committee constructions for solving problems of selection, diagnostics, and prediction”, Proc. Steklov Inst. Math., Supplement Issue 1, 2002, S67–S101 | MR | Zbl
[9] A. V. Orlov, “Numerical solution of bilinear programming problems”, Comput. Math. Math. Phys., 48:2 (2008), 225–241 | DOI | MR | Zbl
[10] A. V. Orlov, “Global search for optimistic solutions in a bilevel problem of optimal tariff choice by a telecommunication company”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 6:1 (2013), 57–71 | Zbl
[11] A. V. Orlov, A. S. Strekalovsky, “On numerical search for the equilibria in bimatrix games”, Comput. Math. Math. Phys., 45:6 (2005), 947–960 | MR | Zbl
[12] K. V. Rudakov, On Some Classes of Pattern Recognition Algorithms: General Results, VTs AN SSSR, Moscow, 1980
[13] V. V. Ryazanov, “Committee synthesis of recognition and classification algorithms”, USSR Comput. Math. Math. Phys., 21:6 (1981), 172–182 | DOI | MR | Zbl | Zbl
[14] A. S. Strekalovsky, The Elements of Non-convex Optimization, Nauka, Novosibirsk, 2003
[15] A. S. Strekalovsky, A. V. Orlov, Bimatrix Games and Bilinear Programming, Fizmatlit, Moscow, 2007 | Zbl
[16] A. S. Strekalovsky, A. V. Orlov, A. V. Malyshev, “Local search in a quadratic-linear bilevel programming problem”, Numer. Anal. Appl., 3:1 (2010), 59–70 | DOI
[17] A. S. Strekalovsky, A. V. Orlov, A. V. Malyshev, “Numerical solution of a class of bilevel programming problems”, Numer. Anal. Appl., 3:2 (2010), 165–173 | DOI
[18] Astorino A., Gaudioso M., “Polyhedral separability through successive LP”, J. Optim. Theory Appl., 112:2 (2002), 265–293 | DOI | MR | Zbl
[19] Astorino A., Gaudioso M., “A fixed-center spherical separation algorithm with kernel transformations for classification problems”, Comput. Manage. Sci., 6:3 (2009), 357–372 | DOI | MR | Zbl
[20] Bagirov A. M., Rubinov A. M., Soukhoroukova N. V., Yearwood J., “Unsupervised and supervised data classification via nonsmooth and global optimization”, Top, 11:1 (2003), 1–75 | DOI | MR
[21] Bennett K. P., Mangasarian O. L., “Bilinear separation of two sets in $n$-space”, Comput. Optim. Appl., 2:3 (1993), 207–227 | DOI | MR | Zbl
[22] Mangasarian O. L., “Linear and nonlinear separation of patterns by linear programming”, Oper. Res., 13:3 (1965), 444–452 | DOI | MR | Zbl
[23] Mangasarian O. L., “Mathematical programming in neural networks”, ORSA J. Computing, 5:4 (1993), 349–360 | DOI | MR | Zbl
[24] Mangasarian O. L., “Misclassification minimization”, J. Global Optim., 5:4 (1994), 309–323 | DOI | MR | Zbl
[25] MATLAB – The language of technical computing, URL: , (data obrascheniya: 25.03.2014) http://www.mathworks.com/products/matlab/
[26] Megiddo N., “On the complexity of polyhedral separability”, Discrete Comput. Geom., 3:4 (1988), 325–337 | DOI | MR | Zbl
[27] Rosen J. B., “Pattern separation by convex programming”, J. Math. Anal. Appl., 10 (1965), 123–134 | DOI | MR | Zbl
[28] Shavlik J. W., Mooney R. J., Towell G. G., “Symbolic and neural network learning algorithms: An experimental comparison”, Machine Learning, 6:2 (1991), 111–143
[29] Zhang G. P., “Neural networks for classification: a survey”, IEEE Trans. Systems, Man and Cybernetics. Part C: Applications and reviews, 30:4 (2000), 451–462 | DOI