Affine $3$-nonsystematic perfect codes of length~15
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 1, pp. 32-50
Voir la notice de l'article provenant de la source Math-Net.Ru
A perfect binary code $C$ of length $n=2^k-1$ is called affine $3$-systematic if there exists a $3$-dimensional subspace $L$ in the space $\{0,1\}^n$ such that the intersection of any of its cosets $L+u$ with $C$ is either empty, or a singleton. Otherwise, the code $C$ is called affine $3$-nonsystematic. In the paper, we construct four nonequivalent affine $3$-nonsystematic codes of length 15. Bibliogr. 12.
Keywords:
perfect code, Hamming code, nonsystematic code, affine nonsystematic code, affine $3$-nonsystematic code, component.
@article{DA_2015_22_1_a2,
author = {S. A. Malyugin},
title = {Affine $3$-nonsystematic perfect codes of length~15},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {32--50},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2015_22_1_a2/}
}
S. A. Malyugin. Affine $3$-nonsystematic perfect codes of length~15. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 1, pp. 32-50. http://geodesic.mathdoc.fr/item/DA_2015_22_1_a2/