On an extremal inverse problem in graph theory
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 1, pp. 19-31
Cet article a éte moissonné depuis la source Math-Net.Ru
Upper bounds are obtained for minimal number of vertices in graphs having prescribed number of maximal independent sets. Ill. 1, bibliogr. 6.
Keywords:
inverse problem, independent set
Mots-clés : bipartite graph.
Mots-clés : bipartite graph.
@article{DA_2015_22_1_a1,
author = {A. B. Dainiak and A. D. Kurnosov},
title = {On an extremal inverse problem in graph theory},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {19--31},
year = {2015},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2015_22_1_a1/}
}
A. B. Dainiak; A. D. Kurnosov. On an extremal inverse problem in graph theory. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/DA_2015_22_1_a1/
[1] Czabarka É., Székely L., Wagner S., “The inverse problem for certain tree parameters”, Discrete Appl. Math., 157:15 (2009), 3314–3319 | DOI | MR | Zbl
[2] Erdős P., Gallai T., “Gráfok előírt fokú pontokkal”, Mat. Lapok, 11 (1960), 264–274
[3] Havel V., “Poznámka o existenci konečných grafů”, Časopis pro pěstování matematiky, 80:4 (1955), 477–480 | MR | Zbl
[4] Linek V., “Bipartite graphs can have any number of independent sets”, Discrete Math., 76:2 (1989), 131–136 | DOI | MR | Zbl
[5] Wagner S., “A class of trees and its Wiener index”, Acta Appl. Math., 91:2 (2006), 119–132 | DOI | MR | Zbl
[6] Wang H., Yu G., “All but 49 numbers are Wiener indices of trees”, Acta Appl. Math., 92:1 (2006), 15–20 | DOI | MR | Zbl