On an extremal inverse problem in graph theory
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 1, pp. 19-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper bounds are obtained for minimal number of vertices in graphs having prescribed number of maximal independent sets. Ill. 1, bibliogr. 6.
Keywords: inverse problem, independent set
Mots-clés : bipartite graph.
@article{DA_2015_22_1_a1,
     author = {A. B. Dainiak and A. D. Kurnosov},
     title = {On an extremal inverse problem in graph theory},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2015_22_1_a1/}
}
TY  - JOUR
AU  - A. B. Dainiak
AU  - A. D. Kurnosov
TI  - On an extremal inverse problem in graph theory
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2015
SP  - 19
EP  - 31
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2015_22_1_a1/
LA  - ru
ID  - DA_2015_22_1_a1
ER  - 
%0 Journal Article
%A A. B. Dainiak
%A A. D. Kurnosov
%T On an extremal inverse problem in graph theory
%J Diskretnyj analiz i issledovanie operacij
%D 2015
%P 19-31
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2015_22_1_a1/
%G ru
%F DA_2015_22_1_a1
A. B. Dainiak; A. D. Kurnosov. On an extremal inverse problem in graph theory. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/DA_2015_22_1_a1/

[1] Czabarka É., Székely L., Wagner S., “The inverse problem for certain tree parameters”, Discrete Appl. Math., 157:15 (2009), 3314–3319 | DOI | MR | Zbl

[2] Erdős P., Gallai T., “Gráfok előírt fokú pontokkal”, Mat. Lapok, 11 (1960), 264–274

[3] Havel V., “Poznámka o existenci konečných grafů”, Časopis pro pěstování matematiky, 80:4 (1955), 477–480 | MR | Zbl

[4] Linek V., “Bipartite graphs can have any number of independent sets”, Discrete Math., 76:2 (1989), 131–136 | DOI | MR | Zbl

[5] Wagner S., “A class of trees and its Wiener index”, Acta Appl. Math., 91:2 (2006), 119–132 | DOI | MR | Zbl

[6] Wang H., Yu G., “All but 49 numbers are Wiener indices of trees”, Acta Appl. Math., 92:1 (2006), 15–20 | DOI | MR | Zbl