Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2015_22_1_a1, author = {A. B. Dainiak and A. D. Kurnosov}, title = {On an extremal inverse problem in graph theory}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {19--31}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2015_22_1_a1/} }
A. B. Dainiak; A. D. Kurnosov. On an extremal inverse problem in graph theory. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/DA_2015_22_1_a1/
[1] Czabarka É., Székely L., Wagner S., “The inverse problem for certain tree parameters”, Discrete Appl. Math., 157:15 (2009), 3314–3319 | DOI | MR | Zbl
[2] Erdős P., Gallai T., “Gráfok előírt fokú pontokkal”, Mat. Lapok, 11 (1960), 264–274
[3] Havel V., “Poznámka o existenci konečných grafů”, Časopis pro pěstování matematiky, 80:4 (1955), 477–480 | MR | Zbl
[4] Linek V., “Bipartite graphs can have any number of independent sets”, Discrete Math., 76:2 (1989), 131–136 | DOI | MR | Zbl
[5] Wagner S., “A class of trees and its Wiener index”, Acta Appl. Math., 91:2 (2006), 119–132 | DOI | MR | Zbl
[6] Wang H., Yu G., “All but 49 numbers are Wiener indices of trees”, Acta Appl. Math., 92:1 (2006), 15–20 | DOI | MR | Zbl