Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2014_21_6_a1, author = {A. N. Glebov and D. Zh. Zambalaeva and A. A. Skretneva}, title = {$2/3$-approximation algorithm for the maximization version of the asymmetric two peripatetic salesman problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {11--20}, publisher = {mathdoc}, volume = {21}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2014_21_6_a1/} }
TY - JOUR AU - A. N. Glebov AU - D. Zh. Zambalaeva AU - A. A. Skretneva TI - $2/3$-approximation algorithm for the maximization version of the asymmetric two peripatetic salesman problem JO - Diskretnyj analiz i issledovanie operacij PY - 2014 SP - 11 EP - 20 VL - 21 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2014_21_6_a1/ LA - ru ID - DA_2014_21_6_a1 ER -
%0 Journal Article %A A. N. Glebov %A D. Zh. Zambalaeva %A A. A. Skretneva %T $2/3$-approximation algorithm for the maximization version of the asymmetric two peripatetic salesman problem %J Diskretnyj analiz i issledovanie operacij %D 2014 %P 11-20 %V 21 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2014_21_6_a1/ %G ru %F DA_2014_21_6_a1
A. N. Glebov; D. Zh. Zambalaeva; A. A. Skretneva. $2/3$-approximation algorithm for the maximization version of the asymmetric two peripatetic salesman problem. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 6, pp. 11-20. http://geodesic.mathdoc.fr/item/DA_2014_21_6_a1/
[1] Glebov A. N., Zambalaeva D. Zh., “A polynomial algorithm with approximation ratio 7/9 for the maximum two peripatetic salesmen problem”, J. Appl. Industr. Math., 6:1 (2012), 69–89 | DOI | MR | Zbl
[2] Kaplan H., Lewenstein M., Shafrir N., Sviridenko M., “Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs”, JACM, 52:4 (2005), 602–626 | DOI | MR
[3] De Kort J. B. J. M., “Lower bounds for symmetric $K$-peripatetic salesman problems”, Optimization, 22:1 (1991), 113–122 | DOI | MR | Zbl
[4] De Kort J. B. J. M., “Upper bounds for the symmetric 2-peripatetic salesman problems”, Optimization, 23:4 (1992), 357–367 | DOI | MR | Zbl
[5] De Kort J. B. J. M., “A branch and bound algorithm for symmetric 2-peripatetic salesman problems”, Eur. J. Oper. Res., 10:2 (1993), 229–243 | DOI | MR
[6] Gabow H. N., “An efficient reduction technique for degree-restricted subgraph and bidirected network flow problems”, Proc. 15th Ann. ACM Symp. Theory of Computing (Boston, April 25–27, 1983), ACM, New York, 1983, 448–456
[7] Paluch K., Mucha M., Madry A., “A 7/9-approximation algorithm for the maximum traveling salesman problem”, APPROX-RANDOM, Lecture Notes in Comput. Sci., 5687, 2009, 298–311 | MR | Zbl