Bounds on the cardinality of a~minimal $1$-perfect bitrade in the Hamming graph
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 6, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

We improve well-known upper and lower bounds on the minimal cardinality of the support of an eigenfunction of the Hamming graph $H(n,q)$ for $q>2$. In particular, the cardinality of a minimal $1$-perfect bitrade in $H(n,q)$ is estimated. We show that the cardinality of such bitrade is at least $2^{n-\frac{n-1}q}(q-2)^\frac{n-1}q$ in case $q\ge4$ and $3^\frac n2(1-O(1/n))$ in case $q=3$. Moreover, we propose a construction of bitrades of the cardinality $q^\frac{(q-2)(n-1)}q2^{\frac{n-1}q+1}$ for $n\equiv1\bmod q$ where $q$ is a prime power. Bibliogr. 10.
Keywords: Hamming graph, $1$-perfect bitrade.
Mots-clés : Krawtchouk polynomial
@article{DA_2014_21_6_a0,
     author = {K. V. Vorob'ev and D. S. Krotov},
     title = {Bounds on the cardinality of a~minimal $1$-perfect bitrade in the {Hamming} graph},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_6_a0/}
}
TY  - JOUR
AU  - K. V. Vorob'ev
AU  - D. S. Krotov
TI  - Bounds on the cardinality of a~minimal $1$-perfect bitrade in the Hamming graph
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 3
EP  - 10
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_6_a0/
LA  - ru
ID  - DA_2014_21_6_a0
ER  - 
%0 Journal Article
%A K. V. Vorob'ev
%A D. S. Krotov
%T Bounds on the cardinality of a~minimal $1$-perfect bitrade in the Hamming graph
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 3-10
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_6_a0/
%G ru
%F DA_2014_21_6_a0
K. V. Vorob'ev; D. S. Krotov. Bounds on the cardinality of a~minimal $1$-perfect bitrade in the Hamming graph. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 6, pp. 3-10. http://geodesic.mathdoc.fr/item/DA_2014_21_6_a0/