On algebraic immunity of Dillon's bent functions
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 5, pp. 67-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the algebraic immunity of a Boolean function in $n$ variables doesn't exceed $\lceil n/2\rceil$. In this paper, it is proved that $\lceil n/4\rceil+1$ is an upper bound on the algebraic immunity of Dillon's bent functions constructed with linear functions. Bibliogr. 13.
Keywords: Boolean function, nonlinearity, bent function, algebraic immunity.
@article{DA_2014_21_5_a5,
     author = {S. Yu. Filyuzin},
     title = {On algebraic immunity of {Dillon's} bent functions},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {67--75},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_5_a5/}
}
TY  - JOUR
AU  - S. Yu. Filyuzin
TI  - On algebraic immunity of Dillon's bent functions
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 67
EP  - 75
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_5_a5/
LA  - ru
ID  - DA_2014_21_5_a5
ER  - 
%0 Journal Article
%A S. Yu. Filyuzin
%T On algebraic immunity of Dillon's bent functions
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 67-75
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_5_a5/
%G ru
%F DA_2014_21_5_a5
S. Yu. Filyuzin. On algebraic immunity of Dillon's bent functions. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 5, pp. 67-75. http://geodesic.mathdoc.fr/item/DA_2014_21_5_a5/

[1] Baev V. V., “Nekotorye nizhnie otsenki na algebraicheskuyu immunnost funktsii, zadannykh svoimi sled-formami”, Probl. peredachi inform., 44:3 (2008), 81–104 | MR

[2] Kolomeets N. A., “O verkhnei otsenke nelineinosti nekotorogo klassa bulevykh funktsii s maksimalnoi algebraicheskoi immunnostyu”, Prikl. diskret. matematika, 2013, no. 1, 14–16

[3] Tokareva N. N., “Bent-funktsii: rezultaty i prilozheniya. Obzor rabot”, Prikl. diskr. mat., 2009, no. 1, 15–37

[4] Tokareva N. N., Simmetrichnaya kriptografiya, Kratkii kurs: uchebnoe posobie, Novosib. gos. un-t, Novosibirsk, 2012, 234 pp.

[5] Carlet C., “Vectorial Boolean functions for cryptography”, Boolean models and methods in mathematics, computer science, and engineering, Cambridge Univ. Press, Cambridge, 2010, 398–472 URL: http://www.math.univ-paris13.fr/~carlet | DOI

[6] Cusick T. W., Yuan L., Stănică P., “On a combinatoric conjecture”, Integers, 1 (2011), 185–203 | MR

[7] Dalai D. K., Maitra S., Sarkar S., “Basic theory in construction of Boolean functions with maximum possible annihilator immunity”, Des. Codes Cryptogr., 40:1 (2006), 41–58 | DOI | MR | Zbl

[8] Deng G., “A note on a combinatorial conjecture”, Open J. Discrete Math., 3 (2013), 49–52 | DOI

[9] Dillon J. F., Elementary Hadamard difference sets, Thes. $\dots$ doct. phylosophy, Univ. of Maryland, 1974 | MR

[10] Lobanov M., “Exact relation between nonlinearity and algebraic immunity”, Discrete Math. Appl., 16:5 (2006), 453–460 | DOI | MR | Zbl

[11] Nawaz Y., Gong G., Gupta K. C., “Upper bounds on algebraic immunity of Boolean power functions”, FSE, Lect. Notes Comput. Sci., 4047, 2006, 243–265

[12] Rothaus O., “On bent functions”, J. Comb. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[13] Tu Z., Deng Y., “A conjecture about binary strings and its applications on constructing Boolean functions with optimal algebraic immunity”, Des. Codes Cryptogr., 60:1 (2011), 1–14 | DOI | MR | Zbl