Numerical search of equilibrium in Cournot model with $S$-like costs functions
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 5, pp. 40-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cournot model with the linear demand function and $S$-like costs functions given by $3$-degree polynomials is described and reduced to maximization of a single function – the potential. It is shown that this optimization problem may have more than one stationary point. Hence the model may have more than one equilibrium. Methods based on using of concave support functions for search of the potential's stationary points are suggested. Numerical comparing of methods is given. Tab. 1, bibliogr. 30.
Mots-clés : Cournot model, DC-decomposition
Keywords: Nash equilibrium, potential games, support functions.
@article{DA_2014_21_5_a3,
     author = {I. M. Minarchenko},
     title = {Numerical search of equilibrium in {Cournot} model with $S$-like costs functions},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {40--53},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_5_a3/}
}
TY  - JOUR
AU  - I. M. Minarchenko
TI  - Numerical search of equilibrium in Cournot model with $S$-like costs functions
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 40
EP  - 53
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_5_a3/
LA  - ru
ID  - DA_2014_21_5_a3
ER  - 
%0 Journal Article
%A I. M. Minarchenko
%T Numerical search of equilibrium in Cournot model with $S$-like costs functions
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 40-53
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_5_a3/
%G ru
%F DA_2014_21_5_a3
I. M. Minarchenko. Numerical search of equilibrium in Cournot model with $S$-like costs functions. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 5, pp. 40-53. http://geodesic.mathdoc.fr/item/DA_2014_21_5_a3/

[1] Bredikhin S. V., Tiunova E. M., Khutoretskii A. B., “Tsenovoe soglasovanie sprosa i predlozheniya pri raspredelenii moschnosti mnogoprotsessornoi sistemy”, Sib. zhurn. industr. matematiki, 10:3 (2007), 20–28 | MR | Zbl

[2] Busygin V. P., Zhelobodko E. V., Kokovin S. G., Tsyplakov A. A., Mikroekonomicheskii analiz nesovershennykh rynkov, NGU, Novosibirsk, 1999, 133 pp.

[3] Galperin V. M., Ignatev S. M., Morgunov V. I., Mikroekonomika, V 2-kh t., v. 1, ed. V. M. Galperin, Ekonomicheskaya shkola, SPb., 1994, 349 pp.

[4] Gorelov M. A., Kononenko A. F., “Igry s zapreschënnymi situatsiyami. Modeli s zhëstkimi ogranicheniyami”, Avtomatika i telemekhanika, 2010, no. 1, 118–129 | MR | Zbl

[5] Minarchenko I. M., “O potentsialnykh i nepotentsialnykh zadachakh poiska ravnovesiya v modeli Kurno”, Tr. XV Baikalskoi mezhdunar. shkoly-seminara “Metody optimizatsii i ikh prilozheniya”, v. 6, Mat. ekonomika, RIO IDSTU SO RAN, Irkutsk, 2011, 197–202

[6] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vyssh. shkola, M., 1998, 304 pp. | MR | Zbl

[7] Podkovalnikov S. V., Khamisov O. V., “Nesovershennye elektroenergeticheskie rynki: modelirovanie i issledovanie razvitiya generiruyuschikh moschnostei”, Izv. AN. Energetika, 2011, no. 2, 57–76

[8] Popov L. D., Vvedenie v teoriyu, metody i ekonomicheskie prilozheniya zadach o dopolnitelnosti, Izd-vo UrGU, Ekaterinburg, 2001, 124 pp.

[9] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, 2-e izd., Fizmatlit, M., 2005, 368 pp.

[10] Tarasevich L. S., Grebennikov P. I., Leusskii A. I., Mikroekonomika, Yurait-Izdat, M., 2006, 374 pp.

[11] Tokarev V. V., “Garantirovannye rezultaty v igrakh s zapreschënnymi situatsiyami”, Avtomatika i telemekhanika, 2009, no. 6, 123–140 | MR | Zbl

[12] Tokarev V. V., “Osobennosti ravnovesii v igrakh s zapreschënnymi situatsiyami”, Avtomatika i telemekhanika, 2009, no. 7, 127–138 | MR | Zbl

[13] Khamisov O. V., “Nevypuklaya optimizatsiya s nelineinymi opornymi funktsiyami”, Tr. IMM UrO RAN, 19, no. 2, 2013, 295–306

[14] Badri A., Rashidinejad M., “Security constrained optimal bidding strategy of GenCos in day ahead oligopolistic power markets: a Cournot-based model”, Electr. Eng., 95 (2013), 63–72 | DOI

[15] Bagwell K., Staiger R. W., “The economics of trade agreements in the linear Cournot delocation model”, J. Int. Econ., 88 (2012), 32–46 | DOI

[16] Bischi G.-I., Chiarella C., Kopel M., Szidarovszky F., Nonlinear oligopolies, Springer-Verl., Berlin, 2010, 334 pp. | MR | Zbl

[17] Botterud A., Ilic M. D., Wangensteen I., “Optimal investments in power generation under centralized and decentralized decision making”, IEEE Trans. Power Syst., 20:1 (2005), 254–263 | DOI

[18] Chen H., Wong K. P., Nguyen D. H. M., Chung C. Y., “Analyzing oligopolistic electricity market using coevolutionary computation”, IEEE Trans. Power Syst., 21:1 (2006), 143–152 | DOI

[19] Ewerhart C., “Cournot games with biconcave demand”, Games Econ. Behav., 85 (2014), 37–47 | DOI | MR | Zbl

[20] Metzler C., “Nash–Cournot equilibria in power markets on a linearized DC network with arbitrage: formulations and properties”, Networks Spatial Econ., 3:2 (2003), 123–150 | DOI

[21] Monderer D., Shapley L. S., “Potential games”, Games Econ. Behav., 14 (1996), 124–143 | DOI | MR | Zbl

[22] Peters H., Game theory: A multi-leveled approach, Springer-Verl., Berlin, 2008, 366 pp. | MR

[23] Pham D. T., Le T. H. A., “Convex analysis approach to D. C. programming: theory, algorithms and applications”, Acta Math. Vietnam, 22 (1997), 289–355 | MR | Zbl

[24] Puu T., Oligopoly: old ends – new means, Springer-Verl., Berlin, 2011, 172 pp. | Zbl

[25] Ryan J. K., Daewon S., Xuying Z., “Coordinating a supply chain with a manufacturer-owned online channel: a dual channel model under price competition”, IEEE Trans. Eng. Manage., 60:2 (2013), 247–259 | DOI

[26] Ryan S. M., Downward A., Philpott A. B., Zakeri G., “Welfare effects of expansions in equilibrium models of an electricity market with fuel network”, IEEE Trans. Power Syst., 25:3 (2010), 1337–1349 | DOI

[27] Shan Jin, Botterud A., Ryan S. M., “Impact of demand response on thermal generation investment with high wind penetration”, IEEE Trans. Smart Grid, 4:4 (2013), 2374–2383 | DOI

[28] Slade M. E., “What does an oligopoly maximize?”, J. Industr. Econ., 42:1 (1994), 45–61 | DOI

[29] Vallee T., Yildizoglu M., “Can they beat the Cournot equilibrium learning with memory and convergence to equilibria in a Cournot oligopoly?”, Comput. Econ., 41 (2013), 493–516 | DOI

[30] Wang R., Li Y., Zhang S., “Analysis of Nash–Cournot equilibrium for electricity markets considering option contracts”, J. Shanghai Univ., 12:6 (2008), 542–547 | DOI