Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2014_21_5_a0, author = {A. Yu. Bernshtein}, title = {$3$-regular subgraphs and $(3,1)$-colorings of $4$-regular pseudographs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--16}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2014_21_5_a0/} }
A. Yu. Bernshtein. $3$-regular subgraphs and $(3,1)$-colorings of $4$-regular pseudographs. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 5, pp. 3-16. http://geodesic.mathdoc.fr/item/DA_2014_21_5_a0/
[1] Distel R., Teoriya grafov, Izd-vo In-ta matematiki, Novosibirsk, 2002, 336 pp.
[2] Lidl R., Niderraiter G., Konechnye polya, v. 1, Mir, M., 1988, 430 pp. | MR | Zbl
[3] Tashkinov V. A., “3-odnorodnye chasti 4-odnorodnykh grafov”, Mat. zametki, 36:2 (1984), 239–259 | MR | Zbl
[4] Addario-Berry L., Dalal K., Reed B. A., “Degree constrained subgraphs”, Discrete Appl. Math., 156:7 (2008), 1168–1174 | DOI | MR | Zbl
[5] Alon N., Friedland S., Kalai G., “Regular subgraphs of almost regular graphs”, J. Comb. Theory Ser. B, 37:1 (1984), 79–91 | DOI | MR | Zbl
[6] Alon N., Friedland S., Kalai G., “Every 4-regular graph plus an edge contains a 3-regular subgraph”, J. Comb. Theory Ser. B, 37:1 (1984), 92–93 | DOI | MR | Zbl
[7] Alon N., “Combinatorial Nullstellensatz”, J. Comb. Probab. Comput., 8:1–2 (1999), 7–29 | DOI | MR | Zbl
[8] Berge C., Las Vergnas M., “On the existence of subgraphs with degree constraints”, Indagationes Mathematicae (Proc.), 81:1 (1978), 165–176 | DOI | MR | Zbl
[9] Bondy J. A., Murty U. S. R., Graph theory, Grad. Texts Math., 244, Springer-Verl., Berlin, 2008, 655 pp. | DOI | MR | Zbl
[10] Chvátal V., Fleischner H., Sheehan J., Thomassen C., “Three-regular subgraphs of four-regular graphs”, J. Graph Theory, 3:4 (1979), 371–386 | DOI | MR | Zbl
[11] Cornuéjols G., “General factors of graphs”, J. Comb. Theory Ser. B, 45:2 (1988), 185–198 | DOI | MR | Zbl
[12] Heinrich K., Hell P., Kirkpatrick D. G., Liu G., “A simple existence criterion for $(g)$-factors”, Discrete Math., 85:3 (1990), 313–317 | DOI | MR | Zbl
[13] Kano M., Saito A., “$[a,b]$-Factors of graphs”, Discrete Math., 47 (1983), 113–116 | DOI | MR | Zbl
[14] Kano M., “Factors of regular graphs”, J. Comb. Theory Ser. B, 41:1 (1986), 27–36 | DOI | MR | Zbl
[15] Lovász L., “Subgraphs with prescribed valencies”, J. Comb. Theory, 8:4 (1970), 391–416 | DOI | MR | Zbl
[16] Moreno O., Zinoviev V. A., “Some sufficient conditions for 4-regular graphs to have 3-regular subgraphs”, Lect. Notes Comput. Sci., 781, 1994, 164–171 | DOI | MR | Zbl
[17] Moreno O., Zinoviev V. A., “Three-regular subgraphs of four-regular graphs”, Eur. J. Comb., 19:3 (1998), 369–373 | DOI | MR | Zbl
[18] Olson J. E., “A combinatorial problem on finite Abelian groups. II”, J. Number Theory, 1:2 (1969), 195–199 | DOI | MR | Zbl
[19] Sebö A., “General antifactors of graphs”, J. Comb. Theory Ser. B, 58:2 (1993), 174–184 | DOI | MR | Zbl
[20] Tutte W. T., “The subgraph problem”, Ann. Discrete Math., 3 (1978), 289–295 | DOI | MR | Zbl