Integer models for the interrupt-oriented services of jobs by single machine
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 4, pp. 89-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of minimizing the total service time of different jobs from one device preemption. We describe three linear integer programming models for the problem. Comparative study of the models and a simulation experiment are also described. Tab. 1, ill. 6, bibliogr. 7.
Keywords: combinatorial optimization, polyhedral cone, polytope, subgraph.
@article{DA_2014_21_4_a8,
     author = {R. Yu. Simanchev and N. Yu. Shereshik},
     title = {Integer models for the interrupt-oriented services of jobs by single machine},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {89--101},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_4_a8/}
}
TY  - JOUR
AU  - R. Yu. Simanchev
AU  - N. Yu. Shereshik
TI  - Integer models for the interrupt-oriented services of jobs by single machine
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 89
EP  - 101
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_4_a8/
LA  - ru
ID  - DA_2014_21_4_a8
ER  - 
%0 Journal Article
%A R. Yu. Simanchev
%A N. Yu. Shereshik
%T Integer models for the interrupt-oriented services of jobs by single machine
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 89-101
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_4_a8/
%G ru
%F DA_2014_21_4_a8
R. Yu. Simanchev; N. Yu. Shereshik. Integer models for the interrupt-oriented services of jobs by single machine. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 4, pp. 89-101. http://geodesic.mathdoc.fr/item/DA_2014_21_4_a8/

[1] Baptiste Ph., Carlier J., Kononov A., Queyranne M., Sevastyanov S., Sviridenko M., “Structural properties of optimal schedules with preemption”, J. Appl. Industr. Math., 4:4 (2010), 455–474 | DOI | MR | Zbl

[2] Lazarev A. A., Kvaratskheliya A. G., “Svoistva optimalnykh raspisanii zadachi teorii raspisanii minimizatsii summarnogo vzveshennogo momenta okonchaniya dlya odnogo pribora”, Avtomatika i telemekhanika, 2010, no. 10, 80–89 | MR | Zbl

[3] Simanchëv R. Yu., Tolstukha B. A., “Nekotorye poliedralnye svoistva odnoi zadachi teorii raspisanii”, Sb. tr. mezhdunar. konf. “Diskretnaya optimizatsiya i issledovanie operatsii” (Novosibirsk, 24–28 iyunya 2013 g.), In-t matematiki SO RAN, Novosibirsk, 2013, 153

[4] Simanchëv R. Yu., Shereshik N. Yu., “Skhema dikhotomii dlya poiska minimalnogo direktivnogo sroka v zadache obsluzhivaniya razlichnykh trebovanii odnim priborom”, Vestn. Omsk. gos. un-ta, 2013, no. 2, 48–50

[5] Tolstukha B. A., Urazova I. V., Shereshik N. Yu., “Klass opornykh neravenstv dlya zadachi $1|pmtn;p_i=p;r_i|\sum\omega_i C_i$”, Sb. tr. mezhdunar. konf. “Diskretnaya optimizatsiya i issledovanie operatsii” (Novosibirsk, 24–28 iyunya 2013 g.), In-t matematiki SO RAN, Novosibirsk, 2013, 154

[6] Bouma W. H., Goldengorin B., “A polytime algorithm based on a primal LP model for scheduling problem $1|pmtn;p_i=2;r_i|\sum\omega_i C_i$”, Recent Adv. Appl. Math., Proc. American Conf. Applied Mathematics (AMERICAN-MATH'10), Harvard Univ., Cambridge, MA, 2010, 415–420

[7] Brucker P., Knust S., Complexity results for scheduling problems, http://www.mathematik.uni-osnabrueck.de/research/OR/class