@article{DA_2014_21_4_a8,
author = {R. Yu. Simanchev and N. Yu. Shereshik},
title = {Integer models for the interrupt-oriented services of jobs by single machine},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {89--101},
year = {2014},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2014_21_4_a8/}
}
TY - JOUR AU - R. Yu. Simanchev AU - N. Yu. Shereshik TI - Integer models for the interrupt-oriented services of jobs by single machine JO - Diskretnyj analiz i issledovanie operacij PY - 2014 SP - 89 EP - 101 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/item/DA_2014_21_4_a8/ LA - ru ID - DA_2014_21_4_a8 ER -
R. Yu. Simanchev; N. Yu. Shereshik. Integer models for the interrupt-oriented services of jobs by single machine. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 4, pp. 89-101. http://geodesic.mathdoc.fr/item/DA_2014_21_4_a8/
[1] Baptiste Ph., Carlier J., Kononov A., Queyranne M., Sevastyanov S., Sviridenko M., “Structural properties of optimal schedules with preemption”, J. Appl. Industr. Math., 4:4 (2010), 455–474 | DOI | MR | Zbl
[2] Lazarev A. A., Kvaratskheliya A. G., “Svoistva optimalnykh raspisanii zadachi teorii raspisanii minimizatsii summarnogo vzveshennogo momenta okonchaniya dlya odnogo pribora”, Avtomatika i telemekhanika, 2010, no. 10, 80–89 | MR | Zbl
[3] Simanchëv R. Yu., Tolstukha B. A., “Nekotorye poliedralnye svoistva odnoi zadachi teorii raspisanii”, Sb. tr. mezhdunar. konf. “Diskretnaya optimizatsiya i issledovanie operatsii” (Novosibirsk, 24–28 iyunya 2013 g.), In-t matematiki SO RAN, Novosibirsk, 2013, 153
[4] Simanchëv R. Yu., Shereshik N. Yu., “Skhema dikhotomii dlya poiska minimalnogo direktivnogo sroka v zadache obsluzhivaniya razlichnykh trebovanii odnim priborom”, Vestn. Omsk. gos. un-ta, 2013, no. 2, 48–50
[5] Tolstukha B. A., Urazova I. V., Shereshik N. Yu., “Klass opornykh neravenstv dlya zadachi $1|pmtn;p_i=p;r_i|\sum\omega_i C_i$”, Sb. tr. mezhdunar. konf. “Diskretnaya optimizatsiya i issledovanie operatsii” (Novosibirsk, 24–28 iyunya 2013 g.), In-t matematiki SO RAN, Novosibirsk, 2013, 154
[6] Bouma W. H., Goldengorin B., “A polytime algorithm based on a primal LP model for scheduling problem $1|pmtn;p_i=2;r_i|\sum\omega_i C_i$”, Recent Adv. Appl. Math., Proc. American Conf. Applied Mathematics (AMERICAN-MATH'10), Harvard Univ., Cambridge, MA, 2010, 415–420
[7] Brucker P., Knust S., Complexity results for scheduling problems, http://www.mathematik.uni-osnabrueck.de/research/OR/class