Affine $3$-nonsystematic codes
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 4, pp. 54-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

A perfect binary code $C$ of length $n=2^k-1$ is called affine $3$-systematic if in the space $\{0,1\}^n$ there exists a $3$-dimensional subspace $L$ such that the intersection of any of its cosets $L+u$ with the code $C$ is either empty or a singleton. Otherwise, the code $C$ is called affine $3$-nonsystematic. We construct affine $3$-nonsystematic codes of length $n=2^k-1$, $k\geq4$. Bibliogr. 11.
Keywords: perfect code, Hamming code, nonsystematic code, affine nonsystematic code, affine $3$-nonsystematic code, component.
@article{DA_2014_21_4_a5,
     author = {S. A. Malyugin},
     title = {Affine $3$-nonsystematic codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {54--61},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_4_a5/}
}
TY  - JOUR
AU  - S. A. Malyugin
TI  - Affine $3$-nonsystematic codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 54
EP  - 61
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_4_a5/
LA  - ru
ID  - DA_2014_21_4_a5
ER  - 
%0 Journal Article
%A S. A. Malyugin
%T Affine $3$-nonsystematic codes
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 54-61
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_4_a5/
%G ru
%F DA_2014_21_4_a5
S. A. Malyugin. Affine $3$-nonsystematic codes. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 4, pp. 54-61. http://geodesic.mathdoc.fr/item/DA_2014_21_4_a5/

[1] Avgustinovich S. V., Soloveva F. I., “O nesistematicheskikh sovershennykh dvoichnykh kodakh”, Probl. peredachi inform., 32:3 (1996), 47–50 | MR | Zbl

[2] Malyugin S. A., “Nesistematicheskie sovershennye dvoichnye kody”, Diskret. analiz i issled. operatsii. Ser. 1, 8:1 (2001), 55–76 | MR | Zbl

[3] Malyugin S. A., “Ob affinno nesistematicheskikh kodakh”, Sb. dokl. mezhdunar. konf., posvyaschënnoi 90-letiyu so dnya rozhdeniya A. A. Lyapunova (Novosibirsk, 8–12 oktyabrya 2001 g.), In-t matematiki SO RAN, Novosibirsk, 2001, 393–394 http://www.sbras.nsc.ru/ws/Lyap2001/2288

[4] Malyugin S. A., “Affine nonsystematic codes”, J. Appl. Industr. Math., 6:4 (2012), 451–459 | DOI | MR

[5] Malyugin S. A., “On enumeration of nonequivalent perfect binary codes of length 15 and rank 15”, J. Appl. Industr. Math., 1:1 (2007), 77–80 | DOI | MR | Zbl

[6] Romanov A. M., “O nesistematicheskikh sovershennykh kodakh dliny 15”, Diskret. analiz i issled. operatsii. Ser. 1, 4:4 (1997), 75–78 | MR | Zbl

[7] Östergård P. R. J., Pottonen O., “The perfect binary one-error-correcting codes of length 15. Part I – classification”, IEEE Trans. Inform. Theory, 55:10 (2009), 4657–4660 | DOI | MR

[8] Östergård P. R. J., Pottonen O., Phelps K. T., “The perfect binary one-error-correcting codes of length 15. Part II – properties”, IEEE Trans. Inform. Theory, 56:6 (2009), 2571–2582 | DOI | MR

[9] Phelps K. T., LeVan M. J., “Kernels of nonlinear Hamming code”, Des., Codes Criptogr., 6:3 (1995), 247–257 | DOI | MR | Zbl

[10] Phelps K. T., Le Van M. J., “Nonsystematic perfect codes”, SIAM J. Discrete Math., 12:1 (1999), 27–34 | DOI | MR | Zbl

[11] Solov'eva F. I., “Switchings and perfect codes”, Numbers, Information and Complexity, Kluwer Acad. Publ., Dordrecht, 2000, 311–324 | DOI | MR