On reliability of circuits realizing ternary logic functions
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 4, pp. 12-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a realization of the ternary logics functions by the circuits with unreliable functional gates in a full finite basis. It is assumed that gates turn in faulty condition independently and the faults can be arbitrary (e.g., inverse or constant). We describe a class $G$ of ternary logic functions whose circuits can be used to improve the reliability of initial circuits. With inverse faults on the outputs of the basic gates, using functions of the class $G$ constructively we prove that a function different from any variable can be realized with a reliable circuit (we remind that a function equal to a variable can be realized reliably without using functional elements). In particular, if the basis contains at least one function from $G$, then the proposed circuits are not only reliable, but asymptotically reliability optimal for all functions different from any variable. Ill. 2, bibliogr. 13.
Keywords: ternary logics function, functional elements circuit, unreliability of a circuit.
@article{DA_2014_21_4_a1,
     author = {M. A. Alekhina and O. Yu. Barsukova},
     title = {On reliability of circuits realizing ternary logic functions},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {12--24},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_4_a1/}
}
TY  - JOUR
AU  - M. A. Alekhina
AU  - O. Yu. Barsukova
TI  - On reliability of circuits realizing ternary logic functions
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 12
EP  - 24
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_4_a1/
LA  - ru
ID  - DA_2014_21_4_a1
ER  - 
%0 Journal Article
%A M. A. Alekhina
%A O. Yu. Barsukova
%T On reliability of circuits realizing ternary logic functions
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 12-24
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_4_a1/
%G ru
%F DA_2014_21_4_a1
M. A. Alekhina; O. Yu. Barsukova. On reliability of circuits realizing ternary logic functions. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 4, pp. 12-24. http://geodesic.mathdoc.fr/item/DA_2014_21_4_a1/

[1] Aksenov C. I., “O nadëzhnosti skhem nad proizvolnoi polnoi sistemoi funktsii pri inversnykh neispravnostyakh na vykhodakh elementov”, Izv. vuzov. Povolzhskii region. Estestv. nauki (Penza), 2005, no. 6, 42–55

[2] Alekhina M. A., “O nadëzhnosti i slozhnosti skhem v bazise $\{x|y\}$ pri inversnykh neispravnostyakh na vykhodakh elementov”, Diskret. analiz i issled. operatsii. Ser. 1, 12:2 (2005), 3–11 | MR | Zbl

[3] Alekhina M. A., Aksenov S. I., Vasin A. V., “O funktsiyakh i skhemakh, primenyaemykh dlya povysheniya nadëzhnosti skhem”, Izv. vuzov. Povolzhskii region. Fiz.-mat. nauki (Penza), 2008, no. 3, 30–38

[4] Alekhina M. A., Barsukova O. Yu., “O nadëzhnosti skhem, realizuyuschikh funktsii iz $P_3$”, Izv. vuzov. Povolzhskii region. Fiz.-mat. nauki (Penza), 2012, no. 1, 57–65

[5] Alekhina M. A., Barsukova O. Yu., “Verkhnyaya otsenka nenadëzhnosti skhem v bazise, sostoyaschem iz funktsii Vebba”, Mat. IX mezhdunar. molodëzh. shkoly po diskretnoi matematike i eë prilozheniyam (Moskva, 16–21 sentyabrya 2013 g.), Izd-vo In-ta prikl. matematiki im. M. V. Keldysha RAN, M., 2013, 9–12

[6] Alekhina M. A., Vasin A. V., “O nadëzhnosti skhem v bazisakh, soderzhaschikh funktsii ne bolee chem trekh peremennykh”, Uch. zap. Kazansk. gos. un-ta. Ser. Fiz.-mat. nauki, 151, no. 2, 2009, 25–35 | Zbl

[7] Barsukova O. Yu., “O vozmozhnosti primeneniya odnogo metoda povysheniya nadëzhnosti k skhemam, realizuyuschim funktsii iz $P_3$”, Mat. mezhdunar. nauchno-prakt. konf. “Molodezh i nauka: modernizatsiya i innovatsionnoe razvitie strany”, 1 ch. (Penza, 15–16 sentyabrya 2011 g.), Izd-vo PGU, Penza, 2011, 110–112

[8] Vinogradov Yu. A., “O sinteze trëkhznachnykh skhem”, Mat. voprosy kibernetiki, 3, Nauka, M., 1991, 187–198

[9] Vinogradov Yu. A., Iordanskii M. A., “Mashinnyi analiz skhem EVM”, Probl. kibernetiki, 24, Nauka, M., 1972, 147–160

[10] Larionov V. B., Zamknutye klassy $k$-znachnoi logiki, soderzhaschie klassy monotonnykh ili samodvoistvennykh funktsii, Dis. $\dots$ kand. fiz.-mat. nauk: 01.01.09, M., 2010, 158 pp.

[11] Modeliruyuschie sistemy s mnogoznachnymi gibridnym kodirovaniem, Nauk. dumka, Kiev, 1980, 192 pp.

[12] Alekhina M. A., “Synthesis and complexity of asymptotically optimal circuits with unreliable gates”, Fundam. Informaticae, 104:3 (2010), 219–225 | MR | Zbl

[13] Von Neuman J., “Probabilistic logics and the synthesis of reliable organisms from unreliable components”, Automata Studies, Princeton Univ. Press, Princeton, 1956, 43–98 | MR