Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2014_21_3_a6, author = {A. V. Panyukov and R. E. Shangin}, title = {An exact algorithm for solving the discrete {Weber} problem for a~$k$-tree}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {64--75}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2014_21_3_a6/} }
TY - JOUR AU - A. V. Panyukov AU - R. E. Shangin TI - An exact algorithm for solving the discrete Weber problem for a~$k$-tree JO - Diskretnyj analiz i issledovanie operacij PY - 2014 SP - 64 EP - 75 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2014_21_3_a6/ LA - ru ID - DA_2014_21_3_a6 ER -
A. V. Panyukov; R. E. Shangin. An exact algorithm for solving the discrete Weber problem for a~$k$-tree. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 3, pp. 64-75. http://geodesic.mathdoc.fr/item/DA_2014_21_3_a6/
[1] Bykova V. V., “Vychislitelnye aspekty drevovidnoi shiriny grafa”, Prikl. diskret. matematika, 2011, no. 3, 65–79
[2] Bykova V. V., “FTP-algoritmy na grafakh ogranichennoi drevovidnoi shiriny”, Prikl. diskret. matematika, 2012, no. 2, 65–78
[3] Zabudskii G. G., Lagzdin A. Yu., “Polinomialnye algoritmy resheniya minimaksnoi kvadratichnoi zadachi o naznacheniyakh na setyakh”, Diskret. analiz i issled. operatsii, 18:4 (2011), 49–65 | MR | Zbl
[4] Zabudskii G. G., Lagzdin A. Yu., “Dinamicheskoe programmirovanie dlya resheniya kvadratichnoi zadachi o naznacheniyakh na dereve”, Avtomatika i telemekhanika, 2012, no. 2, 141–155
[5] Zabudskii G. G., Filimonov D. V., “O minimakskoi i minisummnoi zadachakh razmescheniya na setyakh”, Tr. XII Baikalskoi mezhdunar. konf. “Metody optimizatsii i ikh prilozheniya” (Irkutsk, 24 iyunya – 1 iyulya 2001 g.), Izd-vo IGU, Irkutsk, 2001, 150–155
[6] Panyukov A. V., Modeli i metody resheniya zadach postroeniya i identifikatsii geometricheskogo razmescheniya, Diss. $\dots$ d-ra fiz.-mat. nauk: 05.13.16, Chelyabinsk, 1999, 260 pp.
[7] Panyukov A. V., Peltsverger B. F., “Optimalnoe razmeschenie dereva v konechnom mnozhestve”, Zhurn. vychisl. matematiki i mat. fiziki, 28:4 (1988), 618–620 | MR | Zbl
[8] Panyukov A. V., Peltsverger B. F., Shafir A. Yu., “Optimalnoe razmeschenie tochek vetvleniya transportnoi seti na tsifrovoi modeli mestnosti”, Avtomatika i telemekhanika, 1990, no. 9, 153–162 | MR | Zbl
[9] Sergeev S. I., “Kvadratichnaya zadacha o naznacheniyakh. I”, Avtomatika i telemekhanika, 1999, no. 8, 127–147 | MR | Zbl
[10] Trubin V. A., “Effektivnyi algoritm dlya zadachi Vebera s pryamougolnoi metrikoi”, Kibernetika, 1978, no. 6, 67–70 | MR | Zbl
[11] Filimonov D. V., “Reshenie diskretnoi minimaksnoi zadachi razmescheniya na drevovidnoi seti”, Mat. ezhegod. nauchn. seminara aspirantov, Izd-vo Omsk. gos. un-ta, Omsk, 2003, 58–61
[12] Shangin R. E., “Issledovanie effektivnosti priblizhennykh algoritmov resheniya odnogo chastnogo sluchaya zadachi Vebera”, Ekonomika, statistika i informatika. Vestn. UMO, 2012, no. 1, 163–169
[13] Shangin R. E., “O nekotorykh svoistvakh $n$-posledovatelnosvyaznoi tsepi”, Vestn. YuUrGU. Ser. Vychisl. matematika i informatika, 2:1 (2013), 106–113
[14] Arnborg S., “Efficient algorithms for combinatorial problems with bounded decomposability – a survey”, BIT Numerical Math., 25:1 (1985), 1–23 | DOI | MR
[15] Arnborg S., Proskurowski A., “Linear time algorithms for NP-hard problems restricted to partial $k$-trees”, Discrete Appl. Math., 23 (1989), 11–24 | DOI | MR | Zbl
[16] Bodlaender H. L., “Treewidth: algorithmic techniques and results”, Lect. Notes Comput. Sci., 1295, 1997, 19–36 | DOI | MR | Zbl
[17] Ibarra L., “The clique-separator graph for chordal graphs”, Discrete Appl. Math., 157:8 (2009), 1737–1749 | DOI | MR | Zbl
[18] McKee T. A., “On the chordality of a graph”, J. Graph Theory, 17 (1993), 221–232 | DOI | MR | Zbl
[19] Panyukov A. V., Pelzwerger B. V., “Polynomial algorithms to finite Weber problem for a tree network”, J. Comput. Appl. Math., 35 (1991), 291–296 | DOI | MR | Zbl
[20] Robertson N., Seymour P. D., “Graph minors. II. Algorithmic aspects of treewidth”, J. Algorithms, 7 (1986), 309–322 | DOI | MR | Zbl
[21] Rose D. J., “Triangulated graphs and the elimination process”, J. Math. Anal. Appl., 32 (1970), 597–609 | DOI | MR | Zbl
[22] Rose D. J., “On simple characterizations of $k$-trees”, Discrete Math., 7 (1973), 317–322 | DOI | MR
[23] Zabudsky G. G., Filimonov D. V., “An algorithm for minimax location problem on tree with maximal distances”, Proc. II Int. Workshop Discrete Optimization Methods in Production and Logistics (DOM 2004), ISU Press, Omsk–Irkutsk, 2004, 81–85