Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2014_21_2_a2, author = {A. N. Glebov and D. Zh. Zambalaeva}, title = {A partition of a~planar graph with girth~6 into two forests containing no path of length greater than~4}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {33--51}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2014_21_2_a2/} }
TY - JOUR AU - A. N. Glebov AU - D. Zh. Zambalaeva TI - A partition of a~planar graph with girth~6 into two forests containing no path of length greater than~4 JO - Diskretnyj analiz i issledovanie operacij PY - 2014 SP - 33 EP - 51 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2014_21_2_a2/ LA - ru ID - DA_2014_21_2_a2 ER -
%0 Journal Article %A A. N. Glebov %A D. Zh. Zambalaeva %T A partition of a~planar graph with girth~6 into two forests containing no path of length greater than~4 %J Diskretnyj analiz i issledovanie operacij %D 2014 %P 33-51 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2014_21_2_a2/ %G ru %F DA_2014_21_2_a2
A. N. Glebov; D. Zh. Zambalaeva. A partition of a~planar graph with girth~6 into two forests containing no path of length greater than~4. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 33-51. http://geodesic.mathdoc.fr/item/DA_2014_21_2_a2/
[1] Borodin O. V., Ivanova A. O., “Near-proper vertex 2-colorings of sparse graphs”, J. Appl. Industr. Math., 4:1 (2010), 21–23 | DOI | MR | Zbl
[2] Borodin O. V., Ivanova A. O., “Razbienie razrezhennykh ploskikh grafov na dva podgrafa maloi stepeni”, Sib. elektron. mat. izv., 6 (2009), 13–16 | MR
[3] Glebov A. N., Zambalaeva D. Zh., “Putevye razbieniya planarnykh grafov”, Sib. elektron. mat. izv., 4 (2007), 450–459 | MR | Zbl
[4] Zambalaeva D. Zh., “Razbienie ploskogo grafa s obkhvatom 7 na dva zvëzdnykh lesa”, Diskret. analiz i issled. operatsii, 16:3 (2009), 20–46 | MR | Zbl
[5] Borodin O., Ivanova A., “List strong linear 2-arboricity of sparse graphs”, J. Graph Theory, 67:2 (2011), 83–90 | DOI | MR | Zbl
[6] Borowiecki M., Broere I., Frick M., Mihok P., Semanisin G., “A survey of hereditary properties of graphs”, Discus. Math., Graph Theory, 17:1 (1997), 5–50 | DOI | MR | Zbl
[7] Broere I., Dorfling M., Dunbar J. E., Frick M., “A path(ological) partition problem”, Discus. Math., Graph Theory, 18:1 (1998), 113–125 | DOI | MR | Zbl
[8] Broere I., Hajnal P., Mihok P., Semanisin G., “Partition problems and kernels of graphs”, Discus. Math., Graph Theory, 17:2 (1997), 311–313 | DOI | MR | Zbl
[9] Mihok J., “Additive hereditary properties and uniquely partitionable graphs”, Graphs, hypergraphs and matroids, Higher College of Engineering, Zielona Gora, 1985, 49–58 | MR