A partition of a~planar graph with girth~6 into two forests containing no path of length greater than~4
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 33-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every planar graph with girth at least 6 has a vertex partition into two forests containing no path of length greater than 4. Ill. 7, bibliogr. 9.
Keywords: planar graph, girth, path partition.
@article{DA_2014_21_2_a2,
     author = {A. N. Glebov and D. Zh. Zambalaeva},
     title = {A partition of a~planar graph with girth~6 into two forests containing no path of length greater than~4},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {33--51},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_2_a2/}
}
TY  - JOUR
AU  - A. N. Glebov
AU  - D. Zh. Zambalaeva
TI  - A partition of a~planar graph with girth~6 into two forests containing no path of length greater than~4
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 33
EP  - 51
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_2_a2/
LA  - ru
ID  - DA_2014_21_2_a2
ER  - 
%0 Journal Article
%A A. N. Glebov
%A D. Zh. Zambalaeva
%T A partition of a~planar graph with girth~6 into two forests containing no path of length greater than~4
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 33-51
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_2_a2/
%G ru
%F DA_2014_21_2_a2
A. N. Glebov; D. Zh. Zambalaeva. A partition of a~planar graph with girth~6 into two forests containing no path of length greater than~4. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 33-51. http://geodesic.mathdoc.fr/item/DA_2014_21_2_a2/

[1] Borodin O. V., Ivanova A. O., “Near-proper vertex 2-colorings of sparse graphs”, J. Appl. Industr. Math., 4:1 (2010), 21–23 | DOI | MR | Zbl

[2] Borodin O. V., Ivanova A. O., “Razbienie razrezhennykh ploskikh grafov na dva podgrafa maloi stepeni”, Sib. elektron. mat. izv., 6 (2009), 13–16 | MR

[3] Glebov A. N., Zambalaeva D. Zh., “Putevye razbieniya planarnykh grafov”, Sib. elektron. mat. izv., 4 (2007), 450–459 | MR | Zbl

[4] Zambalaeva D. Zh., “Razbienie ploskogo grafa s obkhvatom 7 na dva zvëzdnykh lesa”, Diskret. analiz i issled. operatsii, 16:3 (2009), 20–46 | MR | Zbl

[5] Borodin O., Ivanova A., “List strong linear 2-arboricity of sparse graphs”, J. Graph Theory, 67:2 (2011), 83–90 | DOI | MR | Zbl

[6] Borowiecki M., Broere I., Frick M., Mihok P., Semanisin G., “A survey of hereditary properties of graphs”, Discus. Math., Graph Theory, 17:1 (1997), 5–50 | DOI | MR | Zbl

[7] Broere I., Dorfling M., Dunbar J. E., Frick M., “A path(ological) partition problem”, Discus. Math., Graph Theory, 18:1 (1998), 113–125 | DOI | MR | Zbl

[8] Broere I., Hajnal P., Mihok P., Semanisin G., “Partition problems and kernels of graphs”, Discus. Math., Graph Theory, 17:2 (1997), 311–313 | DOI | MR | Zbl

[9] Mihok J., “Additive hereditary properties and uniquely partitionable graphs”, Graphs, hypergraphs and matroids, Higher College of Engineering, Zielona Gora, 1985, 49–58 | MR