Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2014_21_2_a1, author = {V. A. Voblyi and A. K. Meleshko}, title = {The number of labeled block-cactus graphs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {24--32}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2014_21_2_a1/} }
V. A. Voblyi; A. K. Meleshko. The number of labeled block-cactus graphs. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 24-32. http://geodesic.mathdoc.fr/item/DA_2014_21_2_a1/
[1] Voblyi V. A., “Ob odnoi formule dlya chisla pomechennykh svyaznykh grafov”, Diskret. analiz i issled. operatsii, 19:4 (2012), 48–59 | MR
[2] Voblyi V. A., “Perechislenie pomechennykh eilerovykh kaktusov”, Mat. XI Mezhdunar. seminara “Diskretnaya matematika i eë prilozheniya”, MGU, M., 2012, 275–277
[3] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh eilerovykh polnoblochnykh grafov”, Mat. XV Mezhvuz. seminara “Kombinatornye konfiguratsii i ikh prilozheniya” (Kirovograd, 2013), Izd-vo Kirovogradskogo nats. tekh. un-ta, Kirovograd, 2013, 15–18
[4] Zykov A. A., Osnovy teorii grafov, Nauka, M., 1987, 382 pp. | MR | Zbl
[5] Prudnikov A. P. i dr., Integraly i ryady, v. 1, Nauka, M., 1981, 800 pp. | MR | Zbl
[6] Tatt U., Teoriya grafov, Mir, M., 1988, 424 pp. | MR
[7] Kharari F., Palmer E., Perechislenie grafov, Mir, M., 1977, 324 pp. | MR
[8] Carlitz L., “Single variable Bell polynomials”, Collect. Math., 14 (1962), 13–25 | MR | Zbl
[9] Flajolet Ph., Sedgewick R., Analytic combinatorics, Cambridge Univ. Press, Cambridge, 2009, 810 pp. | MR | Zbl
[10] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in theory graphs. I”, Proc. Nat. Acad. Sci. USA, 42 (1956), 13–25 | DOI | MR
[11] Husimi K., “Note on Mayer's theory of cluster integrals”, J. Chem. Phys., 18 (1950), 682–684 | DOI | MR
[12] Lan J. K., Chang G. J., “Algorithmic aspects of $k$-domination in graphs”, Discrete Appl. Math., 161 (2013), 1513–1520 | DOI | MR
[13] Leroux P., “Enumerative problems inspired by Mayer's theory of cluster integrals”, Electron. J. Comb., 11 (2004), No 32 | MR
[14] Randerath B., Volkmann L., “A characterization of well covered block-cactus graphs”, Australasian J. Comb., 9 (1994), 307–314 | MR | Zbl
[15] Wang F.-H., Wang Y.-L., Chang J.-M., “The lower and upper forcing geodetic numbers of block-cactus graphs”, Eur. J. Oper. Res., 175 (2006), 238–245 | DOI | MR | Zbl