Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_6_a4, author = {D. S. Malyshev}, title = {Critical graph classes for the edge list-ranking problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {59--76}, publisher = {mathdoc}, volume = {20}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_6_a4/} }
D. S. Malyshev. Critical graph classes for the edge list-ranking problem. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 6, pp. 59-76. http://geodesic.mathdoc.fr/item/DA_2013_20_6_a4/
[1] Malyshev D. S., “O minimalnykh slozhnykh elementakh reshetki nasledstvennykh klassov grafov”, Mat. VII molodezh. nauch. shkoly po diskret. matematike i eë pril., Izd-vo IPM RAN, M., 2009, 12–17
[2] Malyshev D. S., “O minimalnykh slozhnykh klassakh grafov”, Diskret. analiz i issled. operatsii, 16:6 (2009), 43–51 | MR | Zbl
[3] Malyshev D. S., Issledovanie granits effektivnoi razreshimosti v semeistve nasledstvennykh klassov grafov, Diss. $\dots$ kand. fiz.–mat. nauk: 01.01.09, Nizhnii Novgorod, 2009, 113 pp.
[4] Malyshev D. S., “Posledovatelnye minimumy reshëtki nasledstvennykh klassov grafov dlya zadachi o rëbernom spiskovom ranzhirovanii”, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo, 2010, no. 4, 133–136 | MR
[5] Malyshev D. S., “Minimalnye slozhnye klassy dlya zadachi o rëbernom spiskovom ranzhirovanii”, Diskret. analiz i issled. operatsii, 18:1 (2011), 70–76 | MR | Zbl
[6] Malyshev D. S., Alekseev V. E., “Granichnye klassy dlya zadach o spiskovom ranzhirovanii otnositelno lesov”, Diskret. analiz i issled. operatsii, 18:6 (2011), 61–70 | MR | Zbl
[7] Malyshev D. S., “Analiz slozhnosti zadachi o rëbernom spiskovom ranzhirovanii dlya nasledstvennykh klassov grafov s ne bolee chem tremya zapretami”, Diskret. analiz i issled. operatsii, 19:1 (2012), 74–96 | MR
[8] Alekseev V. E., “On easy and hard hereditary classes of graphs with respect to the independent set problem”, Discrete Appl. Math., 132 (2004), 17–26 | DOI | MR
[9] Dereniowski D., “Edge ranking of weighted trees”, Discrete Appl. Math., 154 (2006), 1198–1209 | DOI | MR | Zbl
[10] Dereniowski D., “The complexity of list ranking of trees”, Ars Comb., 86 (2008), 97–114 | MR | Zbl
[11] Leiserson C., “Area-efficient graph layout (for VLSI)”, Proc. 21st Ann. IEEE Symp. Foundations of Computer Science, IEEE, Syracuse, 1980, 270–281
[12] Liu J., “The role of elimination trees in sparse factorization”, SIAM J. Matrix Anal. Appl., 11 (1990), 134–172 | DOI | MR | Zbl
[13] Makino K., Uno Y., Ibaraki T., “Minimum edge ranking spanning trees of threshold graphs”, Lect. Notes Comput. Sci., 2518, 2002, 428–440 | DOI | MR | Zbl