Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_6_a3, author = {M. I. Isaev and K. V. Isaeva}, title = {Asymptotic enumeration of {Eulerian} orientations for graphs with strong mixing properties}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {40--58}, publisher = {mathdoc}, volume = {20}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_6_a3/} }
TY - JOUR AU - M. I. Isaev AU - K. V. Isaeva TI - Asymptotic enumeration of Eulerian orientations for graphs with strong mixing properties JO - Diskretnyj analiz i issledovanie operacij PY - 2013 SP - 40 EP - 58 VL - 20 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2013_20_6_a3/ LA - ru ID - DA_2013_20_6_a3 ER -
%0 Journal Article %A M. I. Isaev %A K. V. Isaeva %T Asymptotic enumeration of Eulerian orientations for graphs with strong mixing properties %J Diskretnyj analiz i issledovanie operacij %D 2013 %P 40-58 %V 20 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2013_20_6_a3/ %G ru %F DA_2013_20_6_a3
M. I. Isaev; K. V. Isaeva. Asymptotic enumeration of Eulerian orientations for graphs with strong mixing properties. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 6, pp. 40-58. http://geodesic.mathdoc.fr/item/DA_2013_20_6_a3/
[1] Isaev M. I., “Asimptoticheskoe povedenie chisla eilerovykh orientatsii v grafakh”, Mat. zametki, 93:6 (2013), 828–843 | DOI | Zbl
[2] Biggs N. L., Lloyd E. K., Wilson R. J., Graph theory, Clarendon Press, Oxford, 1976, 1736–1936 | MR
[3] Brightwell G., Winkler P., “Note on counting Eulerian circuits”, Proc. 7th ALENEX and 2nd ANALCO, 2005, 259–262; arXiv: cs/0405067v1
[4] Chung F., “Spectral graph theory”, CBMS Regional Conf. Ser. Math., 92, AMS, New York, 1997, 207 pp. | MR | Zbl
[5] Fiedler M., “Algebraic connectivity of graphs”, Czech. Math. J., 23 (1973), 298–305 | MR | Zbl
[6] I. R. E. Trans. Circuit Theory, CT-5, 4 (1958), 4–7 | DOI
[7] Las Vergnas M., “Le polynôme de Martin d'un graphe Eulérien”, Ann. Discrete Math., 17 (1983), 397–411 | Zbl
[8] Las Vergnas M., “An upper bound for the number of Eulerian orientations of a regular graph”, Combinatorica, 10 (1990), 61–65 | DOI | MR | Zbl
[9] Lovasz L., “Random walks on graphs: a survey”, Combinatorics, Paul Erdös is eighty, v. 2, Janos Bolyai Math. Soc., Budapest, 1996, 353–397 | MR | Zbl
[10] Mihail M., Winkler P., “On the number of Eulerian orientations of a graph”, Algorithmica, 16 (1996), 402–414 | MR | Zbl
[11] McKay B. D., “The asymptotic numbers of regular tournaments, Eulerian digraphs and Eulerian oriented graphs”, Combinatorica, 10:4 (1990), 367–377 | DOI | MR | Zbl
[12] Mohar B., “Isoperimetric numbers of graphs”, J. Comb. Theory. Ser. B, 47:3 (1989), 274–291 | DOI | MR | Zbl
[13] Mohar B., “The Laplacian spectrum of graphs”, Graph theory, combinatorics, and applications, v. 2, 1991, 871–898 | MR | Zbl
[14] Schrijver A., “Bounds on the number of Eulerian orientations”, Combinatorica, 3 (1983), 375–380 | DOI | MR | Zbl