On factorial subclasses of $K_{1,3}$-free graphs
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 6, pp. 30-39

Voir la notice de l'article provenant de la source Math-Net.Ru

For a set of labeled graphs $X$, let $X_n$ be the set of $n$-vertex graphs from $X$. A hereditary class $X$ is called at most factorial if there exist positive constants $c$ and $n_0$ such that $|X_n|\leq n^{cn}$ for all $n>n_0$. Lozin's conjecture states that a hereditary class $X$ is at most factorial if and only if each of the following three classes is at most factorial: $X\cap B$, $X\cap\widetilde B$ and $X\cap S$, where $B,\widetilde B$ and $S$ are the classes of bipartite, co-bipartite and split graphs respectively. We prove this conjecture for subclasses of $K_{1,3}$-free graphs defined by two forbidden subgraphs. Bibliogr. 10.
Keywords: hereditary class of graphs, factorial class.
@article{DA_2013_20_6_a2,
     author = {V. A. Zamaraev},
     title = {On factorial subclasses of $K_{1,3}$-free graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {30--39},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_6_a2/}
}
TY  - JOUR
AU  - V. A. Zamaraev
TI  - On factorial subclasses of $K_{1,3}$-free graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 30
EP  - 39
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_6_a2/
LA  - ru
ID  - DA_2013_20_6_a2
ER  - 
%0 Journal Article
%A V. A. Zamaraev
%T On factorial subclasses of $K_{1,3}$-free graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 30-39
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_6_a2/
%G ru
%F DA_2013_20_6_a2
V. A. Zamaraev. On factorial subclasses of $K_{1,3}$-free graphs. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 6, pp. 30-39. http://geodesic.mathdoc.fr/item/DA_2013_20_6_a2/