Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_5_a6, author = {R. E. Shangin}, title = {A deterministic algorithm for solving the {Weber} problem for an $n$-sequentially connected chain}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {84--96}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_5_a6/} }
TY - JOUR AU - R. E. Shangin TI - A deterministic algorithm for solving the Weber problem for an $n$-sequentially connected chain JO - Diskretnyj analiz i issledovanie operacij PY - 2013 SP - 84 EP - 96 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2013_20_5_a6/ LA - ru ID - DA_2013_20_5_a6 ER -
R. E. Shangin. A deterministic algorithm for solving the Weber problem for an $n$-sequentially connected chain. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 5, pp. 84-96. http://geodesic.mathdoc.fr/item/DA_2013_20_5_a6/
[1] Bykova V. V., “Vychislitelnye aspekty drevovidnoi shiriny grafa”, Prikl. diskret. matematika, 2011, no. 3, 65–79
[2] Zabudskii G. G., Lagzdin A. Yu., “Polinomialnye algoritmy resheniya minimaksnoi kvadratichnoi zadachi o naznacheniyakh na setyakh”, Diskret. analiz i issled. operatsii, 18:4 (2011), 49-65 | MR | Zbl
[3] Zabudskii G. G., Filimonov D. V., “O minimakskoi i minisummnoi zadachakh razmescheniya na setyakh”, Tr. XII Baikalskoi mezhdunar. konf. “Metody optimizatsii i ikh prilozheniya” (Irkutsk, 24 iyunya – 1 iyulya 2001 g.), Izd-vo IGU, Irkutsk, 2001, 150–155
[4] Panyukov A. V., Modeli i metody resheniya zadach postroeniya i identifikatsii geometricheskogo razmescheniya, Dis. $\dots$ d-ra fiz.-mat. nauk, Yuzhnouralskii un-t, Chelyabinsk, 1999, 260 pp.
[5] Panyukov A. V., Peltsverger B. F., “Optimalnoe razmeschenie dereva v konechnom mnozhestve”, Zhurn. vychisl. matematiki i mat. fiziki, 28:4 (1988), 618–620 | MR | Zbl
[6] Panyukov A. V., Peltsverger B. F., Shafir A. Yu., “Optimalnoe razmeschenie tochek vetvleniya transportnoi seti na tsifrovoi modeli mestnosti”, Avtomatika i telemekhanika, 1990, no. 9, 153–162 | MR | Zbl
[7] Sergeev S. I., “Kvadratichnaya zadacha o naznacheniyakh. I”, Avtomatika i telemekhanika, 1999, no. 8, 127–147 | MR | Zbl
[8] Trubin V. A., “Effektivnyi algoritm dlya zadachi Vebera s pryamougolnoi metrikoi”, Kibernetika, 1978, no. 6, 67–70 | MR | Zbl
[9] Filimonov D. V., “Reshenie diskretnoi minimaksnoi zadachi razmescheniya na drevovidnoi seti”, Mat. ezhegod. nauch. seminara aspirantov i studentov-vypusknikov, Izd-vo Omsk. gos. un-ta, Omsk, 2003, 58–61
[10] Shangin R. E., “Issledovanie effektivnosti priblizhennykh algoritmov resheniya odnogo chastnogo sluchaya zadachi Vebera”, Ekonomika, statistika i informatika. Vestn. UMO, 2012, no. 1, 163–169
[11] Shangin R. E., “O nekotorykh svoistvakh $n$-posledovatelnosvyaznoi tsepi”, Vestn. YuUrGU. Ser. Vychisl. matematika i informatika, 2:1 (2013), 106–113
[12] Shangin R. E., “Kvazipolinomialnyi algoritm dlya resheniya zadachi Vebera dlya $n$-posledovatelnosvyaznogo tsikla”, Obozrenie prikl. i prom. matematiki, 19:4 (2012), 122–124
[13] Shangin R. E., “Razrabotka i analiz algoritmov dlya zadachi Vebera”, Tez. dokl. mezhdunar. konf. “Problemy optimizatsii i ekonomicheskie prilozheniya” (Omsk, 2–6 iyulya 2012 g.), Izd-vo Omsk. gos. un-ta, Omsk, 2012, 121
[14] McKee T. A., “On the chordality of a graph”, J. Graph Theory, 17 (1993), 221–232 | DOI | MR | Zbl
[15] Panyukov A. V., Pelzwerger B. V., “Polynomial algorithms to finite Weber problem for a tree network”, J. Comput. Appl. Math., 35 (1991), 291–296 | DOI | MR | Zbl
[16] Zabudsky G. G., Filimonov D. V., “An algorithm for minimax location problem on a tree with maximal distances”, Proc. 2nd Int. Workshop Discrete Optimization Methods in Production and Logistics (DOM2004), ISU Press, Omsk–Irkutsk, 2004, 81–85