On extremely transitive extended perfect codes
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 5, pp. 31-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is constructed an infinite set of extended perfect codes of length $n=2^k$, $k\ge4$ that are extremely transitive, which means that all perfect codes obtained from these transitive extended codes by puncturing any coordinate are nontransitive. The classification of such codes of length 16 is done. Ill. 2, tab. 2, bibliogr. 14.
Keywords: extended perfect binary code, Steiner triple system
Mots-clés : transitive code, Pasch configuration.
@article{DA_2013_20_5_a2,
     author = {G. K. Guskov and F. I. Solov'eva},
     title = {On extremely transitive extended perfect codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {31--44},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_5_a2/}
}
TY  - JOUR
AU  - G. K. Guskov
AU  - F. I. Solov'eva
TI  - On extremely transitive extended perfect codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 31
EP  - 44
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_5_a2/
LA  - ru
ID  - DA_2013_20_5_a2
ER  - 
%0 Journal Article
%A G. K. Guskov
%A F. I. Solov'eva
%T On extremely transitive extended perfect codes
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 31-44
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_5_a2/
%G ru
%F DA_2013_20_5_a2
G. K. Guskov; F. I. Solov'eva. On extremely transitive extended perfect codes. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 5, pp. 31-44. http://geodesic.mathdoc.fr/item/DA_2013_20_5_a2/

[1] Vasilev Yu. L., “O negruppovykh plotno upakovannykh kodakh”, Probl. kibernetiki, 8, 1962, 337–339 | MR

[2] Krotov D. S., “$Z_4$-lineinye sovershennye kody”, Diskret. analiz i issled. operatsii. Ser. 1, 7:4 (2000), 78–90 | MR | Zbl

[3] Malyugin S. A., O klassakh ekvivalentnosti sovershennykh dvoichnykh kodov dliny 15, Preprint No 138, Institut matematiki SO RAN, Novosibirsk, 2004, 34 pp.

[4] Potapov V. N., “O nizhnei otsenke chisla tranzitivnykh sovershennykh kodov”, Diskret. analiz i issled. operatsii. Ser. 1, 13:4 (2006), 49–59 | MR | Zbl

[5] Solovëva F. I., “O postroenii tranzitivnykh kodov”, Probl. peredachi inform., 41:3 (2005), 23–31 | MR | Zbl

[6] Assmus E. F. (Jr.), Mattson H. F. (Jr.), “On tactical configurations and error correcting codes”, J. Comb. Theory, 2 (1967), 243–257 | DOI | MR | Zbl

[7] Borges J., Mogilnykh I. Yu., Rifà J. K., Solov'eva F. I., “On the number of nonequivalent propelinear extended perfect codes”, Electron. J. Comb., 20:2 (2013), 37–50 | MR

[8] Borges J., Mogilnykh I. Yu., Rifà J. K., Solov'eva F. I., “Structural properties of binary propelinear codes”, Adv. Math. Commun., 6:3 (2012), 329–346 | DOI | MR | Zbl

[9] Borges J., Rifà J. K., “A characterization of 1-perfect additive codes”, IEEE Trans. Inform. Theory, 45 (1999), 1688–1697 | DOI | MR | Zbl

[10] Bosma W., Cannon J., Playoust C., “The Magma algebra system. I. The user language”, J. Symb. Comput., 24 (1997), 235–265 | DOI | MR | Zbl

[11] MacWilliams F. G., Sloane N. J. A., The theory of error correcting codes, North-Holland, New York, 1977, 744 pp. | Zbl

[12] Östergård P. R. J., Pottonen O., “The perfect binary one-error-correcting codes of length 15. Part I – Classification”, IEEE Trans. Inform. Theory, 55 (2009), 4657–4660 | DOI | MR

[13] Solov'eva F. I., On perfect codes and related topics, Com$^2$Mac Lect. Notes Ser., 13, Combinatorial and Computational Mathematics Center, Pohang Univ. Sci. Technology (POSTECH), Pohang, Korea, 2004, 80 pp.

[14] Solov'eva F. I., “On transitive codes”, Tr. konf. “Diskretnyi analiz i issledovanie operatsii” (Novosibirsk, 28 iyunya – 2 iyulya 2004 g.), Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2004, 99