On extremely transitive extended perfect codes
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 5, pp. 31-44

Voir la notice de l'article provenant de la source Math-Net.Ru

It is constructed an infinite set of extended perfect codes of length $n=2^k$, $k\ge4$ that are extremely transitive, which means that all perfect codes obtained from these transitive extended codes by puncturing any coordinate are nontransitive. The classification of such codes of length 16 is done. Ill. 2, tab. 2, bibliogr. 14.
Keywords: extended perfect binary code, Steiner triple system
Mots-clés : transitive code, Pasch configuration.
@article{DA_2013_20_5_a2,
     author = {G. K. Guskov and F. I. Solov'eva},
     title = {On extremely transitive extended perfect codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {31--44},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_5_a2/}
}
TY  - JOUR
AU  - G. K. Guskov
AU  - F. I. Solov'eva
TI  - On extremely transitive extended perfect codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 31
EP  - 44
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_5_a2/
LA  - ru
ID  - DA_2013_20_5_a2
ER  - 
%0 Journal Article
%A G. K. Guskov
%A F. I. Solov'eva
%T On extremely transitive extended perfect codes
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 31-44
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_5_a2/
%G ru
%F DA_2013_20_5_a2
G. K. Guskov; F. I. Solov'eva. On extremely transitive extended perfect codes. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 5, pp. 31-44. http://geodesic.mathdoc.fr/item/DA_2013_20_5_a2/