Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_5_a1, author = {E. Kh. Gimadi and A. M. Istomin and I. A. Rykov}, title = {On $m$-capacitated peripatetic salesman problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {13--30}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_5_a1/} }
TY - JOUR AU - E. Kh. Gimadi AU - A. M. Istomin AU - I. A. Rykov TI - On $m$-capacitated peripatetic salesman problem JO - Diskretnyj analiz i issledovanie operacij PY - 2013 SP - 13 EP - 30 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2013_20_5_a1/ LA - ru ID - DA_2013_20_5_a1 ER -
E. Kh. Gimadi; A. M. Istomin; I. A. Rykov. On $m$-capacitated peripatetic salesman problem. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 5, pp. 13-30. http://geodesic.mathdoc.fr/item/DA_2013_20_5_a1/
[1] Ageev A. A., Pyatkin A. V., “Priblizhënnyi algoritm resheniya metricheskoi zadachi o dvukh kommivoyazhërakh s otsenkoi tochnosti 2”, Diskret. analiz i issled. operatsii, 16:4 (2009), 3–20 | MR | Zbl
[2] Ageev A. A., Baburin A. E., Gimadi E. Kh., “Polinomialnyi algoritm s otsenkoi tochnosti 3/4 dlya otyskaniya dvukh neperesekayuschikhsya gamiltonovykh tsiklov maksimalnogo vesa”, Diskret. analiz i issled. operatsii. Ser. 1, 13:2 (2006), 11–20 | MR | Zbl
[3] Baburin A. E., Gimadi E. Kh., Korkishko N. M., “Priblizhënnye algoritmy dlya nakhozhdeniya dvukh rëberno neperesekayuschikhsya gamiltonovykh tsiklov minimalnogo vesa”, Diskret. analiz i issled. operatsii. Cer. 2, 11:1 (2004), 11–25 | MR | Zbl
[4] Gimadi E. Kh., Glazkov Yu. V., Glebov A. N., “Priblizhënnye algoritmy resheniya zadachi o dvukh kommivoyazhërakh v polnom grafe s vesami rëber 1 i 2”, Diskret. analiz i issled. operatsii. Ser. 2, 14:2 (2007), 41–61 | Zbl
[5] Gimadi E. Kh., Ivonina E. V., “Priblizhënnye algoritmy resheniya zadachi o dvukh kommivoyazhërakh na maksimum”, Diskret. analiz i issled. operatsii, 19:1 (2012), 17–32 | MR
[6] Glebov A. N., Zambalaeva D. Zh., “Priblizhënnyi algoritm resheniya zadachi o dvukh kommivoyazhërakh na minimum s razlichnymi vesovymi funktsiyami”, Diskret. analiz i issled. operatsii, 18:5 (2011), 11–37 | MR | Zbl
[7] Glebov A. N., Zambalaeva D. Zh., “Polinomialnyi algoritm s otsenkoi tochnosti 7/9 dlya zadachi o dvukh kommivoyazhërakh na maksimum”, Diskret. analiz i issled. operatsii, 18:4 (2011), 17–48 | MR | Zbl
[8] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR
[9] Baburin A. E., Della Croce F., Gimadi E. K., Glazkov Yu. V., Paschos V. Th., “Approximation algorithms for the 2-PSP with edge weights 1 and 2”, Discrete Appl. Math., 157:9 (2009), 1988–1992 | DOI | MR | Zbl
[10] Berman P., Karpinski M., “8/7-Approximation algorithm for (1,2)-TSP”, Proc. 17th Annual ACM-SIAM Symp. Discrete Algorithm, SODA' 06 (Miami, January, 2006), ACM, New York, 2006, 641–648 | DOI | MR | Zbl
[11] Gabow H. N., “An effcient reduction technique for degree-constrained subgraph and bidirected network flow problems”, Proc. 15th Annual ACM Symp. Theory Comput. (Boston, April 25–27, 1983), ACM, New York, 1983, 448–456
[12] Gutin G., Punnen A. P. (eds.), The traveling salesman problem and its variations, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002, 830 pp. | MR
[13] Della Croce F., Paschos V. Th., Wolfler Calvo R., “Approximating the 2-peripatetic traveling salesman problem”, 7th Workshop Modeling and Algorithms for Planning and Scheduling Problems, MAPSP 2005 (Siena, Italy, June 6–10, 2005), Springer-Verl., Berlin, 2005, 114–116
[14] De Kort J. B. J. M., “Lower bounds for symmetric $k$-peripatetic salesman problems”, Optimization, 22:1 (1991), 113–122 | DOI | MR | Zbl
[15] De Kort J. B. J. M., “A branch and bound algorithm for symmetric 2-peripatetic salesman problems”, Eur. J. Oper. Res., 70:2 (1993), 229–243 | DOI | MR | Zbl
[16] Duchenne É., Laporte G., Semet F., “The undirected $m$-capacitated peripatetic salesman problem”, Eur. J. Oper. Res., 223:3 (2012), 637–643 | DOI | MR
[17] Krarup J., “The peripatetic salesman and some related unsolved problems”, Combinatorial programming: methods and applications, Proc. NATO Advanced Study Inst. (Versailles, 1974), 1975, 173–178 | MR | Zbl
[18] Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., Shmoys D. B. (eds.), The traveling salesman problem: a guided tour of combinatorial optimization, John Wiley Sons, Chichester–New York–Brisbane–Toronto–Singapore, 1985, 463 pp. | MR | Zbl
[19] Papadimitriu C. H., Yannakakis M., “The travelling salesman problem with distances one and two”, Math. Oper. Res., 18:1 (1993), 1–11 | DOI | MR
[20] Roskind J., Tarjan R. E., “A note on finding minimum-cost edge-disjoint spanning trees”, Math. Oper. Res., 10:4 (1985), 701–708 | DOI | MR | Zbl