Steiner quadruple systems of small ranks and extended perfect binary codes
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 46-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the switching method, we give a classification of Steiner quadruple systems of order $N>8$ and rank $r_N$ (different by 2 from the rank of the Hamming code of length $N$) which are embedded into extended perfect binary codes of length $N$ and the same rank. Lower and upper bounds for the number of such different systems are provided. The lower bound and description of different Steiner quadruple systems of order $N$ and rank $r_N$ which are not embedded into extended perfect binary codes of length $N$ and the same rank are given. Tab. 4, bibliogr. 22.
Keywords: Steiner quadruple system, extended perfect binary code, switching, $il$- and $ijkl$-components, rank.
@article{DA_2013_20_4_a4,
     author = {D. I. Kovalevskaya and F. I. Solov'eva},
     title = {Steiner quadruple systems of small ranks and extended perfect binary codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {46--64},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_4_a4/}
}
TY  - JOUR
AU  - D. I. Kovalevskaya
AU  - F. I. Solov'eva
TI  - Steiner quadruple systems of small ranks and extended perfect binary codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 46
EP  - 64
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_4_a4/
LA  - ru
ID  - DA_2013_20_4_a4
ER  - 
%0 Journal Article
%A D. I. Kovalevskaya
%A F. I. Solov'eva
%T Steiner quadruple systems of small ranks and extended perfect binary codes
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 46-64
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_4_a4/
%G ru
%F DA_2013_20_4_a4
D. I. Kovalevskaya; F. I. Solov'eva. Steiner quadruple systems of small ranks and extended perfect binary codes. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 46-64. http://geodesic.mathdoc.fr/item/DA_2013_20_4_a4/

[1] Avgustinovich S. V., Solovëva F. I., “Postroenie sovershennykh dvoichnykh kodov posledovatelnymi sdvigami $\tilde\alpha$-komponent”, Probl. peredachi inform., 33:3 (1997), 15–21 | MR | Zbl

[2] Aliev I. Sh.-o., “Kombinatornye skhemy i algebry”, Sib. mat. zhurn., 13:3 (1972), 499–509 | MR | Zbl

[3] Vasilev Yu. L., “O negruppovykh plotno-upakovannykh kodakh”, Probl. kibernetiki, 8, 1962, 337–339 | MR

[4] Zinovev V. A., Zinovev D. V., “O kodakh Vasileva dliny $n=2^m$ i udvoenie sistem Shteinera $S(n,4,3)$ zadannogo ranga”, Probl. peredachi inform., 42:1 (2006), 13–33 | MR | Zbl

[5] Zinovev V. A., Zinovev D. V., “O razreshimosti sistem Shteinera $S(v=2^m,4,3)$ ranga $r\leq v-m+1$ nad $\mathbb F^2$”, Probl. peredachi inform., 43:1 (2007), 39–55 | MR

[6] Zinovev V. A., Zinovev D. V., “Sistemy Shteinera $S(v,k,k-1)$: komponenty i rang”, Probl. peredachi inform., 47:2 (2011), 52–71 | MR

[7] Kovalevskaya D. I., Solovëva F. I., “O sistemakh chetvërok Shteinera malogo ranga, vlozhimykh v rasshirennye sovershennye dvoichnye kody”, Diskret. analiz i issled. operatsii, 19:5 (2012), 47–62 | MR

[8] Kovalevskaya D. I., Solovëva F. I., Filimonova E. S., “O sistemakh troek Shteinera malogo ranga, vlozhimykh v sovershennye dvoichnye kody”, Diskret. analiz i issled. operatsii, 20:3 (2013), 3–25

[9] Krotov D. S., Potapov V. N., “O svitchingovoi ekvivalentnosti $n$-arnykh kvazigrupp poryadka 4 i sovershennykh dvoichnykh kodov”, Probl. peredachi inform., 46:3 (2010), 22–28 | MR | Zbl

[10] Mak-Vilyams F. Dzh., Sloen N. Dzh., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979, 744 pp.

[11] Petrenyuk A. Ya., “Priznaki neizomorfnosti sistem troek Shteinera”, Ukr. mat. zhurn., 24:6 (1972), 772–780

[12] Solovëva F. I., Topalova S. T., “Sovershennye dvoichnye kody i sistemy troek Shteinera s maksimalnymi poryadkami grupp avtomorfizmov”, Diskret. analiz i issled. operatsii. Ser. 1, 7:4 (2000), 101–110 | MR | Zbl

[13] Doyen J., Hubaut X., Vandensavel M., “Ranks of incidence matrices of Steiner triple systems”, Math. Z., 163 (1978), 251–259 | DOI | MR | Zbl

[14] Doyen J., Vandensavel M., “Nonisomorphic Steiner quadruple systems”, Bull. Soc. Math. Belg., 23 (1971), 393–410 | MR | Zbl

[15] Hanani H., “On quadruple systems”, Can. J. Math., 12 (1960), 145–157 | DOI | MR | Zbl

[16] Hanani H., “The existence and construction of balanced incomplete block designs”, Ann. Math. Stat., 32:2 (1961), 361–386 | DOI | MR | Zbl

[17] Lenz H., “On the number of Steiner quadruple systems”, Mitt. Math. Seminar Giessen., 169 (1985), 55–71 | MR | Zbl

[18] Lindner C. C., “On the construction of nonisomorphic Steiner quadruple systems”, Colloq. Math., 29 (1974), 303–306 | MR | Zbl

[19] Östergård P. R., Pottonen O., “The perfect binary one-error-correcting codes of length 15. Part 1: Classification”, IEEE Trans. Inform. Theory, 55 (2009), 4657–4660 | DOI | MR

[20] Solov'eva F. I., Avgustinovich S. V., Heden O., “The classification of some perfect codes”, Des. Codes Cryptogr., 31:3 (2004), 313–318 | DOI | MR

[21] Tonchev V. D., “A formula for the number of Steiner quadruple systems on $2^n$ points of $2$-rank $2^n-n$”, J. Comb. Des., 11 (2003), 260–274 | DOI | MR | Zbl

[22] Zinoviev V. A., Zinoviev D. V., “Steiner triple systems $S(2^m-1,3,2)$ of rank $2^m-m+1$ over $F_2$”, Probl. Inform. Transm., 48:2 (2012), 102–126 | DOI