Steiner quadruple systems of small ranks and extended perfect binary codes
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 46-64

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the switching method, we give a classification of Steiner quadruple systems of order $N>8$ and rank $r_N$ (different by 2 from the rank of the Hamming code of length $N$) which are embedded into extended perfect binary codes of length $N$ and the same rank. Lower and upper bounds for the number of such different systems are provided. The lower bound and description of different Steiner quadruple systems of order $N$ and rank $r_N$ which are not embedded into extended perfect binary codes of length $N$ and the same rank are given. Tab. 4, bibliogr. 22.
Keywords: Steiner quadruple system, extended perfect binary code, switching, $il$- and $ijkl$-components, rank.
@article{DA_2013_20_4_a4,
     author = {D. I. Kovalevskaya and F. I. Solov'eva},
     title = {Steiner quadruple systems of small ranks and extended perfect binary codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {46--64},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_4_a4/}
}
TY  - JOUR
AU  - D. I. Kovalevskaya
AU  - F. I. Solov'eva
TI  - Steiner quadruple systems of small ranks and extended perfect binary codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 46
EP  - 64
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_4_a4/
LA  - ru
ID  - DA_2013_20_4_a4
ER  - 
%0 Journal Article
%A D. I. Kovalevskaya
%A F. I. Solov'eva
%T Steiner quadruple systems of small ranks and extended perfect binary codes
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 46-64
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_4_a4/
%G ru
%F DA_2013_20_4_a4
D. I. Kovalevskaya; F. I. Solov'eva. Steiner quadruple systems of small ranks and extended perfect binary codes. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 46-64. http://geodesic.mathdoc.fr/item/DA_2013_20_4_a4/