Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_4_a3, author = {A. V. Kelmanov and V. I. Khandeev}, title = {A $2$-approximation polynomial algorithm for one clustering problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {36--45}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_4_a3/} }
TY - JOUR AU - A. V. Kelmanov AU - V. I. Khandeev TI - A $2$-approximation polynomial algorithm for one clustering problem JO - Diskretnyj analiz i issledovanie operacij PY - 2013 SP - 36 EP - 45 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2013_20_4_a3/ LA - ru ID - DA_2013_20_4_a3 ER -
A. V. Kelmanov; V. I. Khandeev. A $2$-approximation polynomial algorithm for one clustering problem. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 36-45. http://geodesic.mathdoc.fr/item/DA_2013_20_4_a3/
[1] Gimadi E. Kh., Kelmanov A. V., Kelmanova M. A., Khamidullin S. A., “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurn. industr. matematiki, 9:1 (2006), 55–74 | MR | Zbl
[2] Gimadi E. Kh., Pyatkin A. V., Rykov I. A., “O polinomialnoi razreshimosti nekotorykh zadach vybora podmnozhestva vektorov v evklidovom prostranstve fiksirovannoi razmernosti”, Diskret. analiz i issled. operatsii, 15:6 (2008), 11–19 | MR | Zbl
[3] Dolgushev A. V., Kelmanov A. V., “Priblizhënnyi algoritm resheniya odnoi zadachi klasternogo analiza”, Diskret. analiz i issled. operatsii, 18:2 (2011), 29–40 | MR | Zbl
[4] Kelmanov A. V., “Problema off-line obnaruzheniya povtoryayuschegosya fragmenta v chislovoi posledovatelnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 81–88 | Zbl
[5] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zhurn. vychisl. matematiki i mat. fiziki, 49:11 (2009), 2059–2067 | MR
[6] Kelmanov A. V., Pyatkin A. V., “O slozhnosti odnogo iz variantov zadachi vybora podmnozhestva “pokhozhikh” vektorov”, Dokl. RAN, 421:5 (2008), 590–592 | MR
[7] Kelmanov A. V., Pyatkin A. V., “Ob odnom variante zadachi vybora podmnozhestva vektorov”, Diskret. analiz i issled. operatsii, 15:5 (2008), 20–34 | MR
[8] Aloise D., Deshpande A., Hansen P., Popat P., NP-hardness of Euclidean sum-of-squares clustering, Les Cahiers du GERAD, G-2008-33, 2008, 4 pp.
[9] Aloise D., Hansen P., On the complexity of minimum sum-of-squares clustering, Les Cahiers du GERAD, G-2007-50, 2007, 12 pp.
[10] Anil K., Jain K., “Data clustering: 50 years beyond $k$-means”, Pattern Recognit. Lett., 31 (2010), 651–666 | DOI
[11] Edwards A. W. F., Cavalli-Sforza L. L., “A method for cluster analysis”, Biometrics, 21 (1965), 362–375 | DOI
[12] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, 1979, 314 pp. | MR | Zbl
[13] Kel'manov A. V., Jeon B., “A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train”, IEEE Trans. Signal Process, 52:3 (2004), 645–656 | DOI | MR
[14] MacQueen J. B., “Some methods for classification and analysis of multivariate observations”, Proc. 5th Berkeley Symp. Math. Stat. Probab., v. 1, 1967, 281–297 | MR | Zbl
[15] Mahajan M., Nimbhorkar P., Varadarajan K., “The planar $k$-means problem is NP-hard”, Lect. Notes Comput. Sci., 5431, 2009, 284–285 | MR
[16] Rao M., “Cluster analysis and mathematical programming”, J. Amer. Stat. Assoc., 66 (1971), 622–626 | DOI | Zbl