Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_4_a0, author = {E. A. Bobrova and A. A. Romanova and V. V. Servakh}, title = {The complexity of cyclic scheduling for identical jobs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--14}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_4_a0/} }
TY - JOUR AU - E. A. Bobrova AU - A. A. Romanova AU - V. V. Servakh TI - The complexity of cyclic scheduling for identical jobs JO - Diskretnyj analiz i issledovanie operacij PY - 2013 SP - 3 EP - 14 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2013_20_4_a0/ LA - ru ID - DA_2013_20_4_a0 ER -
E. A. Bobrova; A. A. Romanova; V. V. Servakh. The complexity of cyclic scheduling for identical jobs. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/DA_2013_20_4_a0/
[1] Mezhetskaya M. A., Zadachi vypuska partii odnotipnykh detalei s ogranicheniem na chislo odnovremenno obrabatyvaemykh detalei, Preprint, Izd-vo OmGU, Omsk, 2008, 35 pp.
[2] Romanova A. A., Servakh V. V., “Optimizatsiya vypuska odnotipnykh detalei na osnove tsiklicheskikh raspisanii”, Diskret. analiz i issled. operatsii, 15:5 (2008), 47–60 | MR | Zbl
[3] Servakh V. V., “O zadache Akersa–Fridmana”, Upravlyaemye sistemy, 23, 1983, 70–81 | MR | Zbl
[4] Timkovskii V. G., “Priblizhënnoe reshenie zadachi sostavleniya raspisaniya tsiklicheskoi sistemy”, Ekonomika i mat. metody, 22:1 (1986), 171–174 | MR
[5] Boudoukh T., Penn M., Weiss G., “Scheduling jobshops with some identical or similar jobs”, J. Sched., 4 (2001), 177–199 | DOI | MR | Zbl
[6] Brucker P., Scheduling algorithms, Springer-Verl., Leipzig, 2007, 371 pp.
[7] Hall N. G., Lee T. E., Posner M. E., “The complexity of cyclic shop scheduling problems”, J. Sched., 5 (2002), 307–327 | DOI | MR | Zbl
[8] Hanen C., “Study of a NP-hard cyclic scheduling problem: the recurrent job-shop”, Eur. J. Oper. Res., 72 (1994), 82–101 | DOI | Zbl
[9] Hardgrave W. W., Nemhauser G. A., “Geometric model and graphical algorithm for a sequencing problem”, Oper. Res., 11:6 (1963), 889–900 | DOI | Zbl
[10] Kamoun H., Sriskandarajah C., “The complexity of scheduling jobs in repetitive manufacturing systems”, Eur. J. Oper. Res., 70 (1993), 350–364 | DOI | Zbl
[11] Levner E., Kats V., Pablo D., Cheng E., “Complexity of cyclic scheduling problems: a state-of-the-art survey”, Comp. Ind. Eng., 59:2 (2010), 352–361 | DOI
[12] McCormick S. T., Rao U. S., “Some complexity results in cyclic scheduling”, Math. Comput. Modeling, 20 (1994), 107–122 | DOI | MR | Zbl
[13] Rao U., Jackson P., Identical jobs cyclic scheduling: subproblems, properties, complexity and solution approaches, Cornell Univ. Press, Ithaca, NY, 1993, 48 pp. | Zbl
[14] Roundy R., “Cyclic schedules for job shops with identical jobs”, Math. Oper. Res., 17:4 (1992), 842–865 | DOI | MR | Zbl
[15] Sotskov Y. N., Shakhlevich N. V., “NP-hardness of shop-scheduling problems with three jobs”, Discrete Appl. Math., 59:3 (1995), 237–266 | MR | Zbl
[16] Timkovsky V. G., “Cyclic shop scheduling”, Handbook of scheduling: algorithms, models, and performance analysis, Chapman Hall/CRC, Boca Raton, 2004, 7.1–7.22 | MR