On the complexity of the satisfiability problem for a~system of functional Boolean equations
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 3, pp. 84-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Functional Boolean equations and the satisfiability problem for them are considered. The satisfiability problem is the following: is there any solution to the functional equation among Boolean functions? The upper and the lower bounds on the complexity of the satisfiability problem for a system of functional Boolean equations are established. This result shows that it is impossible to solve a system of functional Boolean equations by the method which has much less complexity than the method of direct enumeration. Bibliogr. 10.
Keywords: functional Boolean equation, satisfiability problem, complexity.
@article{DA_2013_20_3_a5,
     author = {V. S. Fedorova},
     title = {On the complexity of the satisfiability problem for a~system of functional {Boolean} equations},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {84--100},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_3_a5/}
}
TY  - JOUR
AU  - V. S. Fedorova
TI  - On the complexity of the satisfiability problem for a~system of functional Boolean equations
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 84
EP  - 100
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_3_a5/
LA  - ru
ID  - DA_2013_20_3_a5
ER  - 
%0 Journal Article
%A V. S. Fedorova
%T On the complexity of the satisfiability problem for a~system of functional Boolean equations
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 84-100
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_3_a5/
%G ru
%F DA_2013_20_3_a5
V. S. Fedorova. On the complexity of the satisfiability problem for a~system of functional Boolean equations. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 3, pp. 84-100. http://geodesic.mathdoc.fr/item/DA_2013_20_3_a5/

[1] Akho A. V., Seti R., Ulman D. D., Kompilyatory: printsipy, tekhnologii i instrumenty, Vilyams, M., 2003, 768 pp.

[2] Katerinochkina N. N., “Ob ekvivalentnosti nekotorykh vychislitelnykh ustroistv”, Kibernetika, 1970, no. 5, 27–31

[3] Kudryavtsev V. B., Podkolzin A. S., Bolotov A. A., Osnovy teorii odnorodnykh struktur, Nauka, M., 1990, 296 pp. | MR

[4] Kuroda S. I., “Klassy yazykov i lineino ogranichennye avtomaty”, Kiberneticheskii sb., 9, Mir, M., 1972, 36–51

[5] Lozhkin S. A., Lektsii po osnovam kibernetiki, Izd-vo fak-ta vychisl. matematiki i kibernetiki MGU, M., 2004, 147 pp.

[6] Marchenkov S. S., “Iteratsiya bulevykh $(n,n)$-operatorov”, Vest. MGU. Ser. 15. Vychisl. matematika i kibernetika, 2006, no. 4, 36–41 | MR | Zbl

[7] Marchenkov S. S., Fëdorova V. S., “O resheniyakh sistem funktsionalnykh bulevykh uravnenii”, Diskret. analiz i issled. operatsii, 15:6 (2008), 48–57 | MR | Zbl

[8] Muchnik A. A., “Dobavlenie perevodchika k statyam ‘Ob alternirovanii, I, II’ ”, Kiberneticheskii sb. (novaya seriya), 20, Mir, M., 1983, 141–158 | MR

[9] Ekin O., Foldes S., Hammer P. L., Hellerstein L., “Equational characterizations of Boolean function classes”, Discrete Math., 211 (2000), 27–51 | DOI | MR | Zbl

[10] Foldes S., “Equational classes of Boolean functions via the HSP theorem”, Algebra Univers., 44 (2000), 309–324 | DOI | MR | Zbl