On the maximum cardinality of a~$k$-zero-free set in an Abelian group
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 3, pp. 45-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $A$ of elements of an Abelian group $G$ is called $k$-zero-free if $x_1+\dots+x_{k-1}$ does not belong to $A$ for any $x_1,\dots,x_{k-1}\in A$. A $k$-zero-free set $A$ in the group $G$ is called maximal if for any $x\in G\setminus A$ the set $A\cup\{x\}$ is not $k$-zero-free. We study the maximum cardinality of a $k$-zero-free set in an Abelian group $G$. In particular, the maximum cardinality of a $k$-zero-free arithmetic progression in a cyclic group $Z_n$ is determined and upper and lower bounds on the maximum cardinality of a $k$-zero-free set in an Abelian group $G$ are improved. We describe the structure of $k$-zero-free maximal sets $A$ in the cyclic group $Z_n$ if $\mathrm{gcd}(n,k)=1$ and $k|A|\ge n+1$. Bibliogr. 8.
Keywords: $k$-zero-free set, group of residues, nontrivial subgroup, coset, arithmetic progression.
@article{DA_2013_20_3_a2,
     author = {V. G. Sargsyan},
     title = {On the maximum cardinality of a~$k$-zero-free set in an {Abelian} group},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {45--64},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_3_a2/}
}
TY  - JOUR
AU  - V. G. Sargsyan
TI  - On the maximum cardinality of a~$k$-zero-free set in an Abelian group
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 45
EP  - 64
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_3_a2/
LA  - ru
ID  - DA_2013_20_3_a2
ER  - 
%0 Journal Article
%A V. G. Sargsyan
%T On the maximum cardinality of a~$k$-zero-free set in an Abelian group
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 45-64
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_3_a2/
%G ru
%F DA_2013_20_3_a2
V. G. Sargsyan. On the maximum cardinality of a~$k$-zero-free set in an Abelian group. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 3, pp. 45-64. http://geodesic.mathdoc.fr/item/DA_2013_20_3_a2/

[1] Kurosh A. G., Teoriya grupp, Nauka, M., 1967, 648 pp. | MR | Zbl

[2] Bajnok B., “On the maximum size of a $(k,l)$-sum-free subset of an Abelian group”, J. Number Theory, 5:6 (2009), 953–971 | DOI | MR | Zbl

[3] Diananda P. H., Yap H. P., “Maximal sum-free sets of elements of finite groups”, Proc. Japan Acad., 45 (1969), 1–5 | DOI | MR | Zbl

[4] Green B., Ruzsa I., “Sum-free sets in Abelian groups”, Israel J. Math., 147 (2005), 157–188 | DOI | MR | Zbl

[5] Hamidoune Y. O., Plagne A., “A new critical pair theorem applied to sum-free sets in Abelian groups”, Comment. Math. Helv., 79 (2004), 183–207 | DOI | MR | Zbl

[6] Mann H. B., Addition theorems: the addition theorems of group theory and number theory, Pure Appl. Math. Wiley Ser. Texts, Monogr. Tracts, 18, John Wiley, New York, 1965, 114 pp. | MR | Zbl

[7] Nathanson M. B., Additive number theory: inverse problems and the geometry of sumsets, Grad. Texts Math., 165, Springer-Verl., Berlin–Heidelberg–New York, 1996, 312 pp. | DOI | MR | Zbl

[8] Olson J. E., “On the sum of two sets in a group”, J. Number Theory, 18:18 (1984), 110–120 | DOI | MR | Zbl