Steiner triple systems of small rank embedded into perfect binary codes
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 3, pp. 3-25

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the switching method, we classify Steiner triple systems $\mathrm{STS}(n)$ of order $n=2^r-1$, $r>3$, and of small rank $r_n$ (which differs by 2 from the rank of the Hamming code of length $n$) embedded into perfect binary codes of length $n$ and of the same rank. The lower and upper bounds for the number of such different $\mathrm{STS}$ are given. We present the description and the lower bound for the number of $\mathrm{STS}(n)$ of rank $r_n$ which are not embedded into perfect binary codes of length $n$ and of the same rank. The embeddability of any $\mathrm{STS}(n)$ of rank $r_n-1$ into a perfect code of length $n$ with the same rank, given by Vasil’ev construction, is proved. Bibliogr. 22.
Keywords: Steiner triple system, perfect binary code, switching, $ijk$-component, $i$-component.
Mots-clés : Pasch configuration
@article{DA_2013_20_3_a0,
     author = {D. I. Kovalevskaya and F. I. Solov'eva and E. S. Filimonova},
     title = {Steiner triple systems of small rank embedded into perfect binary codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_3_a0/}
}
TY  - JOUR
AU  - D. I. Kovalevskaya
AU  - F. I. Solov'eva
AU  - E. S. Filimonova
TI  - Steiner triple systems of small rank embedded into perfect binary codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 3
EP  - 25
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_3_a0/
LA  - ru
ID  - DA_2013_20_3_a0
ER  - 
%0 Journal Article
%A D. I. Kovalevskaya
%A F. I. Solov'eva
%A E. S. Filimonova
%T Steiner triple systems of small rank embedded into perfect binary codes
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 3-25
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_3_a0/
%G ru
%F DA_2013_20_3_a0
D. I. Kovalevskaya; F. I. Solov'eva; E. S. Filimonova. Steiner triple systems of small rank embedded into perfect binary codes. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 3, pp. 3-25. http://geodesic.mathdoc.fr/item/DA_2013_20_3_a0/