Steiner triple systems of small rank embedded into perfect binary codes
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 3, pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the switching method, we classify Steiner triple systems $\mathrm{STS}(n)$ of order $n=2^r-1$, $r>3$, and of small rank $r_n$ (which differs by 2 from the rank of the Hamming code of length $n$) embedded into perfect binary codes of length $n$ and of the same rank. The lower and upper bounds for the number of such different $\mathrm{STS}$ are given. We present the description and the lower bound for the number of $\mathrm{STS}(n)$ of rank $r_n$ which are not embedded into perfect binary codes of length $n$ and of the same rank. The embeddability of any $\mathrm{STS}(n)$ of rank $r_n-1$ into a perfect code of length $n$ with the same rank, given by Vasil’ev construction, is proved. Bibliogr. 22.
Keywords: Steiner triple system, perfect binary code, switching, $ijk$-component, $i$-component.
Mots-clés : Pasch configuration
@article{DA_2013_20_3_a0,
     author = {D. I. Kovalevskaya and F. I. Solov'eva and E. S. Filimonova},
     title = {Steiner triple systems of small rank embedded into perfect binary codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_3_a0/}
}
TY  - JOUR
AU  - D. I. Kovalevskaya
AU  - F. I. Solov'eva
AU  - E. S. Filimonova
TI  - Steiner triple systems of small rank embedded into perfect binary codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 3
EP  - 25
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_3_a0/
LA  - ru
ID  - DA_2013_20_3_a0
ER  - 
%0 Journal Article
%A D. I. Kovalevskaya
%A F. I. Solov'eva
%A E. S. Filimonova
%T Steiner triple systems of small rank embedded into perfect binary codes
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 3-25
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_3_a0/
%G ru
%F DA_2013_20_3_a0
D. I. Kovalevskaya; F. I. Solov'eva; E. S. Filimonova. Steiner triple systems of small rank embedded into perfect binary codes. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 3, pp. 3-25. http://geodesic.mathdoc.fr/item/DA_2013_20_3_a0/

[1] Avgustinovich S. V., Solovëva F. I., “O nesistematicheskikh sovershennykh kodakh”, Probl. peredachi inform., 32:3 (1996), 47–50 | MR | Zbl

[2] Avgustinovich S. V., Solovëva F. I., “Postroenie sovershennykh dvoichnykh kodov posledovatelnymi sdvigami $\tilde\alpha$-komponent”, Probl. peredachi inform., 33:3 (1997), 15–21 | MR | Zbl

[3] Vasilev Yu. L., “O negruppovykh plotno-upakovannykh kodakh”, Probl. kibernetiki, 8, 1962, 337–339 | MR

[4] Egorychev G. P., “Dokazatelstvo gipotezy Van der Vardena dlya permanentov”, Sib. mat. zhurn., 22:6 (1981), 65–71 | MR | Zbl

[5] Zinovev V. A., Zinovev D. V., “O kodakh Vasileva dliny $n=2^m$ i udvoenie sistem Shteinera $S(n,4,3)$ zadannogo ranga”, Probl. peredachi inform., 42:1 (2006), 13–33 | MR | Zbl

[6] Zinovev V. A., Zinovev D. V., “Sistemy Shteinera $S(v,k,k-1)$: komponenty i rang”, Probl. peredachi inform., 47:2 (2011), 52–71 | MR

[7] Krotov D. S., Potapov V. N., “O svitchingovoi ekvivalentnosti $n$-arnykh kvazigrupp poryadka 4 i sovershennykh dvoichnykh kodov”, Probl. peredachi inform., 46:3 (2010), 22–28 | MR | Zbl

[8] Mak-Vilyams F. Dzh., Sloen N. Dzh., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979, 744 pp.

[9] Petrenyuk A. Ya., “Priznaki neizomorfnosti sistem troek Shteinera”, Ukr. mat. zhurn., 24:6 (1972), 772–780

[10] Solovëva F. I., Topalova S. T., “Sovershennye dvoichnye kody i sistemy troek Shteinera s maksimalnymi poryadkami grupp avtomorfizmov”, Diskret. analiz i issled. operatsii. Ser. 1, 7:4 (2000), 101–110 | MR | Zbl

[11] Kholl M., Kombinatorika, Mir, M., 1970, 424 pp. | MR

[12] Assmus E. F., Mattson H. F. (Jr.), “On tactical configurations and error correcting codes”, J. Comb. Theory, 2 (1967), 243–257 | DOI | MR | Zbl

[13] Kaski P., Östergård P. R. J., “The Steiner triple systems of order 19”, Math. Comput., 73 (2004), 2075–2092 | DOI | MR | Zbl

[14] Kovalevskaya D. I., Filimonova E. S., Solov'eva F. I., “Steiner triple (quadruple) systems of small ranks embedded into perfect (extended perfect) binary codes”, Proc. 13th Int. Workshop “Algebraic and combinatorial coding theory” (Pomorie, Bulgaria, June 15–21, 2012), Inst. Math. Informatics, Bulg. Acad. Sci., Pomorie, 2012, 203–208

[15] Linial N., Luria Z., “An upper bound on the number of Steiner triple systems”, Random Structures Algorithms, 2013 (to appear)

[16] Östergård P. R. J., Pottonen O., “The perfect binary one-error-correcting codes of length 15. Part 1. Classification”, IEEE Trans. Inform. Theory, 55 (2009), 4657–4660 | DOI | MR

[17] Östergård P. R. J., Pottonen O., “There exist Steiner triple systems of order 15 that do not occur in a perfect binary one-error-correcting code”, J. Comb. Des., 15 (2007), 465–468 | DOI | MR

[18] Solov'eva F. I., On perfect codes and related topics, Com$^2$Mac Lect. Notes. Ser., 13, Pohang Univ. Sci. Tech., Pohang, Korea, 2004, 80 pp.

[19] Solov'eva F. I., Avgustinovich S. V., Heden O., “The classification of some perfect codes”, Des. Codes Cryptogr., 31:3 (2004), 313–318 | DOI | MR

[20] Tonchev V. D., “A mass formula for Steiner triple systems $STS(2^n-1)$ of $2$-rank $2^n-n$”, J. Comb. Theory. Ser. A, 95 (2001), 197–208 | DOI | MR | Zbl

[21] Zinoviev D. V., Zinoviev V. A., “Steiner triple systems $S(2^m-1,3,2)$ of $2$-rank $r\leq2^m-m+1$: construction and properties”, Proc. 13th Int. Workshop “Algebraic and combinatorial coding theory” (Pomorie, Bulgaria, June 15–21, 2012), Inst. Math. Informatics, Bulg. Acad. Sci., Pomorie, 2012, 358–363

[22] Zinoviev V. A., Zinoviev D. V., “Steiner triple systems $S(2^m-1,3,2)$ of rank $2^m-m+1$ over $F_2$”, Probl. Inform. Transm., 48:2 (2012), 102–126 | DOI