Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_2_a5, author = {D. S. Malyshev}, title = {Extending operators for the independent set problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {75--87}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_2_a5/} }
D. S. Malyshev. Extending operators for the independent set problem. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 2, pp. 75-87. http://geodesic.mathdoc.fr/item/DA_2013_20_2_a5/
[1] Alekseev V. E., Talanov V. A., Grafy i algoritmy. Struktury dannykh. Modeli vychislenii, Internet-Universitet Informatsionnykh Tekhnologii, M.; BINOM. Laboratoriya znanii, M., 2006, 320 pp.
[2] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990, 384 pp. | MR | Zbl
[3] Zykov A. A., Osnovy teorii grafov, Nauka, M., 1987, 383 pp. | MR | Zbl
[4] Malyshev D. S., “Polinomialnaya razreshimost zadachi o nezavisimom mnozhestve v klasse grafov bez porozhdënnykh prostykh puti i tsikla s pyatyu vershinami i bolshoi kliki”, Diskret. analiz i issled. operatsii, 19:3 (2012), 58–64 | MR
[5] Malyshev D. S., “Polinomialnaya razreshimost zadachi o nezavisimom mnozhestve dlya odnogo klassa grafov malogo diametra”, Diskret. analiz i issled. operatsii, 19:6 (2012), 37–48
[6] Kharari F., Teoriya grafov, Mir, M., 1982, 301 pp.
[7] Alekseev V. E., “On easy and hard hereditary classes of graphs with respect to the independent set problem”, Discrete Appl. Math., 132 (2004), 17–26 | MR
[8] Arbib C., Mosca R., “On ($P_5$, diamond)-free graphs”, Discrete Math., 250 (2002), 1–22 | MR | Zbl
[9] Brandstadt A., Mosca R., “On the structure and stability number of $P_5$- and co-chair-free graphs”, Discrete Appl. Math., 132 (2003), 47–65 | MR
[10] Brandstadt A., Le H.-O., Mosca R., “Chordal co-gem-free and $(P_5, gem)$-free graphs have bounded clique-width”, Discrete Appl. Math., 145:2 (2005), 232 | MR
[11] Bondy A., Murty U., Graph theory, Grad. Texts Math., 244, Springer-Verl., Heidelberg, 2008, 654 pp. | MR | Zbl
[12] Chudnovsky M., Robertson N., Seymour P., Thomas R., “The strong perfect graph theorem”, Ann. Math., 164 (2002), 51–229 | MR
[13] Diestel R., Graph theory, Grad. Texts Math., 173, Springer-Verl., Heidelberg, 2010, 451 pp. | MR | Zbl
[14] Gerber M., Lozin V., “On the stable set problem in special $P_5$-free graphs”, Discrete Appl. Math., 125 (2003), 215–224 | MR | Zbl
[15] Grötschel M., Lovász L., Schrijver A., Geometric algorithms and combinatorial optimization, Algorithms and Combinatorics, 2, Springer-Verl., Berlin, 1993, 362 pp. | MR
[16] Lovasz L., “A characterization of perfect graphs”, J. Comb. Theory Ser. B, 13 (1972), 95–98 | MR | Zbl
[17] Lozin V., Mosca R., “Maximum independent sets in subclasses of $P_5$-free graphs”, Inf. Process. Lett., 109:6 (2009), 319–324 | MR | Zbl
[18] Mosca R., “Polynomial algorithms for the maximum stable set problem on particular classes of $P_5$-free graphs”, Inf. Process. Lett., 61:3 (1997), 137–143 | MR
[19] Mosca R., “Stable sets in certain $P_6$-free graphs”, Discrete Appl. Math., 92 (1999), 177–191 | MR | Zbl
[20] Mosca R., “Some results on maximum stable sets in certain $P_5$-free graphs”, Discrete Appl. Math., 132 (2003), 175–183 | MR | Zbl
[21] Mosca R., “Some observations on maximum weight stable sets in certain $P_5$-free graph”, Eur. J. Oper. Res., 184:3 (2008), 849–859 | MR | Zbl
[22] Simone C. D., Mosca R., “Stable set and clique polytopes of $(P_5, gem)$-free graphs”, Discrete Math., 307:22 (2007), 2661–2670 | MR | Zbl