Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_2_a3, author = {A. V. Kel'manov and A. V. Pyatkin}, title = {On the complexity of some vector sequence clustering problems}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {47--57}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_2_a3/} }
TY - JOUR AU - A. V. Kel'manov AU - A. V. Pyatkin TI - On the complexity of some vector sequence clustering problems JO - Diskretnyj analiz i issledovanie operacij PY - 2013 SP - 47 EP - 57 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2013_20_2_a3/ LA - ru ID - DA_2013_20_2_a3 ER -
A. V. Kel'manov; A. V. Pyatkin. On the complexity of some vector sequence clustering problems. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 2, pp. 47-57. http://geodesic.mathdoc.fr/item/DA_2013_20_2_a3/
[1] Gimadi E. Kh., Kelmanov A. V., Kelmanova M. A., Khamidullin S. A., “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurn. industr. matematiki, 9:1 (2006), 55–74 | MR | Zbl
[2] Dolgushev A. V., Kelmanov A. V., “K voprosu ob algoritmicheskoi slozhnosti odnoi zadachi klasternogo analiza”, Diskret. analiz i issled. operatsii, 17:2 (2010), 39–45 | MR | Zbl
[3] Kelmanov A. V., “Problema off-line obnaruzheniya povtoryayuschegosya fragmenta v chislovoi posledovatelnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 81–88 | Zbl
[4] Kelmanov A. V., Mikhailova L. V., “Sovmestnoe obnaruzhenie v kvaziperiodicheskoi posledovatelnosti zadannogo chisla fragmentov iz etalonnogo nabora i ee razbienie na uchastki, vklyuchayuschie serii odinakovykh fragmentov”, Zhurn. vychisl. matematiki i mat. fiziki, 46:1 (2006), 172–189 | MR | Zbl
[5] Kelmanov A. V., Mikhailova L. V. Khamidullin S. A., “Ob odnoi zadache poiska uporyadochennykh naborov fragmentov v chislovoi posledovatelnosti”, Diskret. analiz i issled. operatsii, 16:4 (2009), 31–46 | MR
[6] Kelmanov A. V., Pyatkin A. V., “O slozhnosti odnogo iz variantov zadachi vybora podmnozhestva “pokhozhikh” vektorov”, Dokl. RAN, 421:5 (2008), 590–592 | MR
[7] Kelmanov A. V., Pyatkin A. V., “Ob odnom variante zadachi vybora podmnozhestva vektorov”, Diskret. analiz i issled. operatsii, 15:5 (2008), 20–34 | MR
[8] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zhurn. vychisl. matematiki i mat. fiziki, 49:11 (2009), 2059–2067 | MR
[9] Kelmanov A. V., Khamidullin S. A., “Aposteriornoe obnaruzhenie zadannogo chisla odinakovykh podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Zhurn. vychisl. matematiki i mat. fiziki, 41:5 (2001), 807–820 | MR | Zbl
[10] Aloise D., Deshpande A., Hansen P., Popat P., NP-hardness of Euclidean sum-of-squares clustering, Les Cahiers du GERAD, G-2008-33, 2008, 4 pp.
[11] Aloise D., Hansen P., On the complexity of minimum sum-of-squares clustering, Les Cahiers du GERAD, G-2007-50, 2007, 12 pp.
[12] Anil K., Jain K., “Data clustering: 50 years beyond $k$-means”, Pattern Recognit. Lett., 31 (2010), 651–666
[13] Edwards A. W. F., Cavalli-Sforza L. L., “A method for cluster analysis”, Biometrics, 21 (1965), 362–375
[14] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, 1979, 314 pp. | MR | Zbl
[15] Inaba M., Katch N., Imai H., “Applications of weighted Voronoi diagrams and randomization to variance-based clustering”, Proc. 10th Ann. Symp. Comput. Geom. (Stony Brook, New York, June 06–08, 1994), ACM Press, Stony Brook, New York, NY, 1994, 332–339
[16] Kel'manov A. V., Jeon B., “A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train”, IEEE Trans. Signal Processing, 52:3 (2004), 645–656 | MR
[17] Kel'manov A. V., Khamidullin S. A., “An algorithm for recognition of a vector alphabet generating a sequence with a quasi-periodic structure”, Pattern Recognition Image Anal., 20:4 (2010), 451–458
[18] Mahajan M., Nimbhorkar P., Varadarajan K., “The planar $k$-means problem is NP-hard”, Theor. Comput. Sci., 442 (2012), 13–21 | MR | Zbl
[19] MacQueen J. B., “Some methods for classification and analysis of multivariate observations”, Proc. 5th Berkeley Symp. Math. Statist. Probab. (California, Berkeley, June 21 – July 18, 1965; December 27, 1965 – January 7, 1966), v. 1, University of California Press, Berkeley, California, 1967, 281–297 | MR | Zbl
[20] Rao M., “Cluster analysis and mathematical programming”, J. Amer. Stat. Assoc., 66 (1971), 622–626 | Zbl