Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_2_a2, author = {V. V. Karachik}, title = {Rows of {Pascal's} triangle modulo a~prime}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {26--46}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_2_a2/} }
V. V. Karachik. Rows of Pascal's triangle modulo a~prime. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 2, pp. 26-46. http://geodesic.mathdoc.fr/item/DA_2013_20_2_a2/
[1] Karachik V. V., “Svoistva nopmalizovannykh $p$-latinskikh matpits”, Probl. informatiki i energetiki, 1992, no. 5–6, 9–14 | Zbl
[2] Bondarenko B. A., Generalized Pascal triangles and pyramids: their fractals, graphs and applications, The Fibonacci Association, Santa Clara, 1993, 253 pp. | Zbl
[3] Denes J., Keedwell A. D., Latin squares and their applications, Akad. Kiado, Budapest, 1974, 547 pp. | MR | Zbl
[4] Hexel E., Sachs H., “Counting residues modulo a prime in Pascal's triangle”, Indian J. Math., 20:2 (1978), 91–105 | MR | Zbl
[5] Karachik V. V., Bondarenko B. A., “Distribution of Eulerian and Stirling numbers $\bmod\,m$ in arithmetical triangles”, Vopposy vychisl. i ppikl. matematiki, 102, 1996, 133–140 | MR | Zbl
[6] Karachik V. V., “$p$-Latin matrices and Pascal's triangle modulo a prime”, Fibonacci Quarterly, 34:4 (1996), 362–372 | MR | Zbl
[7] Lucas E., “Théorie des fonctions numériques simplement périodiques”, Amer. J. Math., 1:2 (1878), 184–196 | MR