Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_1_a7, author = {V. V. Shenmaier}, title = {The smallest $k$-enclosing ball problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {93--99}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_1_a7/} }
V. V. Shenmaier. The smallest $k$-enclosing ball problem. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/DA_2013_20_1_a7/
[1] Kelmanov A. V., Pyatkin A. V., “NP-polnota nekotorykh zadach vybora podmnozhestva vektorov”, Diskret. analiz i issled. operatsii, 17:5 (2010), 37–45 | MR
[2] Aggarwal A., Imai H., Katoh N., Suri S., “Finding $k$ points with minimum diameter and related problems”, J. Algorithms, 12 (1991), 38–56 | DOI | MR | Zbl
[3] Badoiu M., Clarkson K. L., “Smaller core-sets for balls”, Proc. 14th ACM-SIAM Symposium on Discrete Alg. (Baltimore, January 12–14, 2003), SIAM, Philadelphia, 2003, 801–802 | MR | Zbl
[4] Eppstein D., Erickson J., “Iterated nearest neighbors and finding minimal polytopes”, Discrete Comput. Geom., 11 (1994), 321–350 | DOI | MR | Zbl
[5] Garey M. R., Johnson D. S., “ ‘Strong’ NP-completeness results: motivation, examples, and implications \”, J. ACM, 25:3 (1978), 499–508 | DOI | MR | Zbl
[6] Har-Peled S., Mazumdar S., “Fast algorithms for computing the smallest $k$-enclosing disc”, Algorithmica, 41:3 (2005), 147–157 | DOI | MR | Zbl
[7] Papadimitriou C. H., Computational complexity, Addison-Wesley, New York, 1994, 523 pp. | MR | Zbl
[8] Sylvester J. J., “A question in the geometry of situation”, Quart. J. Math., 1 (1857), 79
[9] Vazirani V., Approximation algorithms, Springer-Verl., Berlin, 2001, 71 pp. | MR
[10] Wirth H., Algorithms+data structures=programs, Prentice Hall, New Jersey, 1976, 366 pp. | MR | Zbl