On optimal cycles for regular balanced no-wait robotic cell problems
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding optimal cyclic schedules for a regular balanced no-wait flow shop robotic cell with one robot is considered. The optimality criterium is the maximum of the throughput. Identical jobs require equal amounts of time on different machines of the robotic cell. All possible cycles are analyzed, and the optimal solution for the problem with 5 machines is found. The solution confirms the already known hypotheses about the structure of the optimal solutions. Tab. 1, ill. 2, bibliogr. 9.
Keywords: robotic cell, cyclic schedule, Agnetis conjecture.
@article{DA_2013_20_1_a4,
     author = {S. V. Pavlov},
     title = {On optimal cycles for regular balanced no-wait robotic cell problems},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_1_a4/}
}
TY  - JOUR
AU  - S. V. Pavlov
TI  - On optimal cycles for regular balanced no-wait robotic cell problems
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 45
EP  - 57
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_1_a4/
LA  - ru
ID  - DA_2013_20_1_a4
ER  - 
%0 Journal Article
%A S. V. Pavlov
%T On optimal cycles for regular balanced no-wait robotic cell problems
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 45-57
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_1_a4/
%G ru
%F DA_2013_20_1_a4
S. V. Pavlov. On optimal cycles for regular balanced no-wait robotic cell problems. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/DA_2013_20_1_a4/

[1] Agnetis A., “Scheduling no-wait robotic cells with two and three machines”, Eur. J. Oper. Res., 123:2 (2000), 303–314 | DOI | MR | Zbl

[2] Brauner N., “Identical part production in cyclic robotic cells: concepts, overview and open questions”, Discrete Appl. Math., 156:13 (2008), 2480–2492 | DOI | MR | Zbl

[3] Che A., Chu C., “Multi-degree cyclic scheduling of a no-wait robotic cell with multiple robots”, Eur. J. Oper. Res., 199:1 (2009), 77–88 | DOI | MR | Zbl

[4] Crama Y. et al., “Cyclic scheduling in robotic flowshops”, Ann. Oper. Res., 96 (2000), 97–124 | DOI | MR | Zbl

[5] Dawande M., Geismar H. N., Sethi S. P., Sriskandarajah C., “Sequencing and scheduling in robotic cells: recent developments”, J. Sched., 8 (2005), 387–462 | DOI | MR

[6] Kats V., Levner E., “A strongly polynomial algorithm for no-wait cyclic robotic flowshop scheduling”, Oper. Res. Lett., 21:4 (1997), 171–179 | DOI | MR | Zbl

[7] Levner E., Kats V., Alcaide D., Cheng T. C. E., “Complexity of cyclic scheduling problems: a state-of-the art survey”, Comput. Ind. Eng., 59:2 (2010), 352–361 | DOI

[8] Levner E., Kats V., Levit V. E., “An improved algorithm for cyclic flowshop scheduling in a robotic cell”, Eur. J. Oper. Res., 97:3 (1997), 500–508 | DOI | MR | Zbl

[9] Mangione F., Brauner N., Penz B., “Cyclic production for the robotic balanced no-wait flow shop”, Int. Conf. Ind. Eng. Production Management (Porto, Portugal, 2003), v. 2, IERM, Porto, 2003, 539–547