Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2013_20_1_a3, author = {E. A. Monakhova}, title = {A new attainable lower bound on the number of nodes in quadruple circulant networks}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {37--44}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2013_20_1_a3/} }
TY - JOUR AU - E. A. Monakhova TI - A new attainable lower bound on the number of nodes in quadruple circulant networks JO - Diskretnyj analiz i issledovanie operacij PY - 2013 SP - 37 EP - 44 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2013_20_1_a3/ LA - ru ID - DA_2013_20_1_a3 ER -
E. A. Monakhova. A new attainable lower bound on the number of nodes in quadruple circulant networks. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 37-44. http://geodesic.mathdoc.fr/item/DA_2013_20_1_a3/
[1] Monakhova E. A., “Optimizatsiya tsirkulyantnykh setei svyazi razmernosti chetyre”, Diskret. analiz i issled. operatsii, 15:3 (2008), 58–64 | MR | Zbl
[2] Monakhova E. A., “Strukturnye i kommunikativnye svoistva tsirkulyantnykh setei”, Prikl. diskret. matematika, 13:3 (2011), 92–115
[3] Bermond J.-C., Comellas F., Hsu D. F., “Distributed loop computer networks: a survey”, J. Parallel Distrib. Comput., 24 (1995), 2–10 | DOI
[4] Chen S., Jia X.-D., “Undirected loop networks”, Networks, 23 (1993), 257–260 | DOI | MR | Zbl
[5] Dougherty R., Faber V., “The degree-diameter problem for several varieties of Cayley graphs. 1: The abelian case”, SIAM J. Discrete Math., 17:3 (2004), 478–519 | DOI | MR | Zbl
[6] Hwang F. K., “A survey on multi-loop networks”, Theoret. Comput. Sci., 299 (2003), 107–121 | DOI | MR | Zbl
[7] Macbeth H., Siagiova J., Siran J., “Cayley graphs of given degree and diameter for cyclic, abelian, and metacyclic groups”, Discrete Math., 312:1 (2012), 94–99 | DOI | MR | Zbl
[8] Monakhova E., “Optimal triple loop networks with given transmission delay: topological design and routing”, Proc. Int. Network Optimization Conf., INOC'2003, Institut National des Telecommunications, Evry/Paris, France, 2003, 410–415
[9] Wong C. K., Coppersmith D., “A combinatorial problem related to multimodule memory organizations”, J. Assoc. Comput. Mach., 21 (1974), 392–402 | DOI | MR | Zbl