A new attainable lower bound on the number of nodes in quadruple circulant networks
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 37-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of maximization of the number of nodes for fixed degree and diameter of undirected circulant networks. The known lower bound on the maximum order of quadruple circulant networks is improved by $O(d^3)$ for any even diameter $d\equiv0\pmod4$. The family of circulant networks achieving the obtained estimate is found. As we conjecture, the found graphs are the largest circulants for the dimension four. Tab. 2, bibliogr. 9.
Keywords: undirected circulant network, diameter, maximum order of a graph.
@article{DA_2013_20_1_a3,
     author = {E. A. Monakhova},
     title = {A new attainable lower bound on the number of nodes in quadruple circulant networks},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2013_20_1_a3/}
}
TY  - JOUR
AU  - E. A. Monakhova
TI  - A new attainable lower bound on the number of nodes in quadruple circulant networks
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2013
SP  - 37
EP  - 44
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2013_20_1_a3/
LA  - ru
ID  - DA_2013_20_1_a3
ER  - 
%0 Journal Article
%A E. A. Monakhova
%T A new attainable lower bound on the number of nodes in quadruple circulant networks
%J Diskretnyj analiz i issledovanie operacij
%D 2013
%P 37-44
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2013_20_1_a3/
%G ru
%F DA_2013_20_1_a3
E. A. Monakhova. A new attainable lower bound on the number of nodes in quadruple circulant networks. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 37-44. http://geodesic.mathdoc.fr/item/DA_2013_20_1_a3/