Some polynomially solvable cases and approximation algorithms for optimal communication tree construction problem
Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 12-27
Voir la notice de l'article provenant de la source Math-Net.Ru
In an arbitrary undirected $n$-node graph with nonnegative edges' weights, it is necessary to construct a spanning tree with minimal node sum of maximal weights of incident edges. Special cases when the problem is polynomially solvable are found. It is shown that a min-weight spanning tree with edges' weights in $[a,b]$ is a $\bigl(2-\frac{2a}{a+b+2b/(n-2)}\bigr)$-approximation solution and the problem of constructing a 1,00048- approximation solution is NP-hard. A heuristic polynomial algorithm is proposed and its a posteriori analysis is carried out. Tab. 4, ill. 4, bibliogr. 14.
Keywords:
communication network, spanning tree, approximation algorithm.
@article{DA_2013_20_1_a1,
author = {A. I. Erzin and R. V. Plotnikov and Yu. V. Shamardin},
title = {Some polynomially solvable cases and approximation algorithms for optimal communication tree construction problem},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {12--27},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2013_20_1_a1/}
}
TY - JOUR AU - A. I. Erzin AU - R. V. Plotnikov AU - Yu. V. Shamardin TI - Some polynomially solvable cases and approximation algorithms for optimal communication tree construction problem JO - Diskretnyj analiz i issledovanie operacij PY - 2013 SP - 12 EP - 27 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2013_20_1_a1/ LA - ru ID - DA_2013_20_1_a1 ER -
%0 Journal Article %A A. I. Erzin %A R. V. Plotnikov %A Yu. V. Shamardin %T Some polynomially solvable cases and approximation algorithms for optimal communication tree construction problem %J Diskretnyj analiz i issledovanie operacij %D 2013 %P 12-27 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2013_20_1_a1/ %G ru %F DA_2013_20_1_a1
A. I. Erzin; R. V. Plotnikov; Yu. V. Shamardin. Some polynomially solvable cases and approximation algorithms for optimal communication tree construction problem. Diskretnyj analiz i issledovanie operacij, Tome 20 (2013) no. 1, pp. 12-27. http://geodesic.mathdoc.fr/item/DA_2013_20_1_a1/