Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2012_19_5_a3, author = {D. I. Kovalevskaya and F. I. Solov'eva}, title = {Steiner quadruple systems of small rank embedded into extended perfect binary codes}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {47--62}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2012_19_5_a3/} }
TY - JOUR AU - D. I. Kovalevskaya AU - F. I. Solov'eva TI - Steiner quadruple systems of small rank embedded into extended perfect binary codes JO - Diskretnyj analiz i issledovanie operacij PY - 2012 SP - 47 EP - 62 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2012_19_5_a3/ LA - ru ID - DA_2012_19_5_a3 ER -
%0 Journal Article %A D. I. Kovalevskaya %A F. I. Solov'eva %T Steiner quadruple systems of small rank embedded into extended perfect binary codes %J Diskretnyj analiz i issledovanie operacij %D 2012 %P 47-62 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2012_19_5_a3/ %G ru %F DA_2012_19_5_a3
D. I. Kovalevskaya; F. I. Solov'eva. Steiner quadruple systems of small rank embedded into extended perfect binary codes. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 5, pp. 47-62. http://geodesic.mathdoc.fr/item/DA_2012_19_5_a3/
[1] Avgustinovich S. V., Soloveva F. I., “Postroenie sovershennykh dvoichnykh kodov posledovatelnymi sdvigami $\tilde\alpha$-komponent”, Problemy peredachi informatsii, 33:3 (1997), 15–21 | MR | Zbl
[2] Aliev I. Sh. o., “Kombinatornye skhemy i algebry”, Sib. mat. zhurn., 13:3 (1972), 499–509 | MR | Zbl
[3] Vasilev Yu. L., “O negruppovykh plotno upakovannykh kodakh”, Problemy kibernetiki, 8, 1962, 337–339 | MR
[4] Glukhikh E. S., Vlozhimost sistem troek Shteinera v sovershennye kody, Magisterskaya dissertatsiya, Novosibirsk. gos. un-t, Novosibirsk, 2005, 18 pp.
[5] Zinovev V. A., Zinovev D. V., “O razreshimosti sistem Shteinera $S(v=2^m,4,3)$ ranga $r\leq v-m+1$ nad $\mathbb F^2$”, Problemy peredachi informatsii, 43:1 (2007), 39–55 | MR
[6] Zinovev V. A., Zinovev D. V., “Sistemy Shteinera $S(v,k,k-1)$: komponenty i rang”, Problemy peredachi informatsii, 47:2 (2011), 52–71 | MR
[7] Mak-Vilyams F. Dzh., Sloen N. Dzh., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979, 744 pp.
[8] Petrenyuk A. Ya., “Priznaki neizomorfnosti sistem troek Shteinera”, Ukr. mat. zhurn., 24:6 (1972), 772–780
[9] Soloveva F. I., Vvedenie v teoriyu kodirovaniya, Ucheb. posobie, Novosibirsk. gos. un-t, Novosibirsk, 2006, 124 pp.
[10] Kholl M., Kombinatorika, Mir, M., 1970, 424 pp. | MR
[11] Doyen J., Hubaut X., Vandensavel M., “Ranks of incidence matrices of Steiner triple systems”, Math. Z., 163:3 (1978), 251–259 | DOI | MR | Zbl
[12] Doyen J., Vandensavel M., “Nonisomorphic Steiner quadruple systems”, Bull. Soc. Math. Belg., 23 (1971), 393–410 | MR | Zbl
[13] Hanani H., “The existence and construction of balanced incomplete block designs”, Ann. Math. Stat., 32:2 (1961), 361–386 | DOI | MR | Zbl
[14] Lenz H., “On the number of Steiner quadruple systems”, Mitt. Math. Seminar Giessen, 169 (1985), 55–71 | MR | Zbl
[15] Lindner C. C., “On the construction of nonisomorphic Steiner quadruple systems”, Colloq. Math., 29 (1974), 303–306 | MR | Zbl
[16] Östergård P. R., Pottonen O., “The perfect binary one-error-correcting codes of length 15. Part 1. Classification”, IEEE Trans. Inform. Theory, 55 (2009), 4657–4660 | DOI | MR
[17] Teirlinck L., “On projective and affine hyperplanes”, J. Comb. Theory Ser. A, 28:3 (1980), 290–306 | DOI | MR | Zbl
[18] Tonchev V. D., “A formula for the number of Steiner quadruple systems on $2^n$ points of $2$-rank $2^n-n$”, J. Comb. Des., 11:4 (2003), 260–274 | DOI | MR | Zbl
[19] Tonchev V. D., “A mass formula for Steiner triple systems $\mathrm{STS}(2^n-1)$ of $2$-rank $2^n-n$”, J. Comb. Theory Ser. A, 95:2 (2001), 197–208 | DOI | MR | Zbl