Minimal in terms of double-sided shadow subsets of Boolean cube layer distinct from circles
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 5, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The double-shadow minimization problem in the Boolean cube layer is considered. The final lexicographical segment of the second layer is shown to have the minimal double-sided shadow. The minimal families of size $1+k(n-k)+(k-1)(n-k-1)$ in the $k$th layer are described when $n=2k$ for small values of $k$. Bibliogr. 5.
Keywords: shadow minimization, double-sided shadow, Boolean cube, ideal weight minimization.
@article{DA_2012_19_5_a0,
     author = {M. A. Bashov},
     title = {Minimal in terms of double-sided shadow subsets of {Boolean} cube layer distinct from circles},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_5_a0/}
}
TY  - JOUR
AU  - M. A. Bashov
TI  - Minimal in terms of double-sided shadow subsets of Boolean cube layer distinct from circles
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 3
EP  - 20
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_5_a0/
LA  - ru
ID  - DA_2012_19_5_a0
ER  - 
%0 Journal Article
%A M. A. Bashov
%T Minimal in terms of double-sided shadow subsets of Boolean cube layer distinct from circles
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 3-20
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_5_a0/
%G ru
%F DA_2012_19_5_a0
M. A. Bashov. Minimal in terms of double-sided shadow subsets of Boolean cube layer distinct from circles. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 5, pp. 3-20. http://geodesic.mathdoc.fr/item/DA_2012_19_5_a0/

[1] Bashov M. A., “Minimizatsiya dvustoronnei teni v edinichnom kube”, Diskret. matematika, 23:4 (2011), 115–132 | DOI | MR

[2] Ahlswede R., Aydinian H., Khachatrian L. H., “More about shifting techniques”, Eur. J. Comb., 24 (2003), 551–556 | DOI | MR | Zbl

[3] Clements G. F., Lindström B., “A generalization of a combinatorial theorem of Macaulay”, J. Comb. Theory, 7 (1969), 230–238 | DOI | MR | Zbl

[4] Katona G. O. H., “A theorem of finite sets”, Proc. Tihany Conf., Academic Press, New York, 1966, 187–207 | MR

[5] Kruskal J., “The number of simplices in a complex”, Mathematical optimization techniques, Univ. California Press, Berkeley–Los Angeles, 1963, 251–278 | MR