Affine nonsystematic codes
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 73-85

Voir la notice de l'article provenant de la source Math-Net.Ru

A perfect binary code $C$ of length $n=2^k-1$ is called affine systematic if there exists a $k$-dimensional subspace of $\{0,1\}^n$ such that the intersection of $C$ and any coset with respect to this subspace is a singleton; otherwise $C$ is called affine nonsystematic. We describe the construction of affine nonsystematic codes. Bibliogr. 12.
Keywords: perfect code, Hamming code, nonsystematic code, affine nonsystematic code, component.
@article{DA_2012_19_4_a6,
     author = {S. A. Malyugin},
     title = {Affine nonsystematic codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {73--85},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a6/}
}
TY  - JOUR
AU  - S. A. Malyugin
TI  - Affine nonsystematic codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 73
EP  - 85
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_4_a6/
LA  - ru
ID  - DA_2012_19_4_a6
ER  - 
%0 Journal Article
%A S. A. Malyugin
%T Affine nonsystematic codes
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 73-85
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_4_a6/
%G ru
%F DA_2012_19_4_a6
S. A. Malyugin. Affine nonsystematic codes. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 73-85. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a6/