Affine nonsystematic codes
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 73-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A perfect binary code $C$ of length $n=2^k-1$ is called affine systematic if there exists a $k$-dimensional subspace of $\{0,1\}^n$ such that the intersection of $C$ and any coset with respect to this subspace is a singleton; otherwise $C$ is called affine nonsystematic. We describe the construction of affine nonsystematic codes. Bibliogr. 12.
Keywords: perfect code, Hamming code, nonsystematic code, affine nonsystematic code, component.
@article{DA_2012_19_4_a6,
     author = {S. A. Malyugin},
     title = {Affine nonsystematic codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {73--85},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a6/}
}
TY  - JOUR
AU  - S. A. Malyugin
TI  - Affine nonsystematic codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 73
EP  - 85
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_4_a6/
LA  - ru
ID  - DA_2012_19_4_a6
ER  - 
%0 Journal Article
%A S. A. Malyugin
%T Affine nonsystematic codes
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 73-85
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_4_a6/
%G ru
%F DA_2012_19_4_a6
S. A. Malyugin. Affine nonsystematic codes. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 73-85. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a6/

[1] Avgustinovich S. V., Soloveva F. I., “O nesistematicheskikh sovershennykh dvoichnykh kodakh”, Problemy peredachi informatsii, 32:3 (1996), 47–50 | MR | Zbl

[2] Avgustinovich S. V., Soloveva F. I., “Postroenie sovershennykh dvoichnykh kodov posledovatelnymi sdvigami $\widetilde\alpha$-komponent”, Problemy peredachi informatsii, 33:3 (1997), 15–21 | MR | Zbl

[3] Malyugin S. A., “O kriterii nesistematichnosti sovershennykh dvoichnykh kodov”, Dokl. RAN, 375:1 (2000), 13–16 | MR | Zbl

[4] Malyugin S. A., “Nesistematicheskie sovershennye dvoichnye kody”, Diskret. analiz i issled. operatsii. Ser. 1, 8:1 (2001), 55–76 | MR | Zbl

[5] Malyugin S. A., “Ob afinno nesistematicheskikh kodakh”, Sb. dokl. mezhdunar. konf., posvyaschënnoi 90-letiyu so dnya rozhdeniya A. A. Lyapunova (Novosibirsk, 8–12 oktyabrya 2001 g.), In-t matematiki, Novosibirsk, 2001, 393–394 http://www.ict.nsc.ru/ws/Lyap2001/2288

[6] Malyugin S. A., “O perechislenii neekvivalentnykh sovershennykh dvoichnykh kodov dliny 15 i ranga 15”, Diskret. analiz i issled. operatsii. Ser. 1, 13:1 (2006), 77–98 | MR | Zbl

[7] Romanov A. M., “O nesistematicheskikh sovershennykh kodakh dliny 15”, Diskret. analiz i issled. operatsii. Ser. 1, 4:4 (1997), 75–78 | MR | Zbl

[8] Östergård P. R. J., Pottonen O., “The perfect binary one-error-correcting codes of length 15, part I – classification”, IEEE Trans. Inform. Theory, 55:10 (2009), 4657–4660 | DOI | MR

[9] Östergård P. R. J., Pottonen O., Phelps K. T., “The perfect binary one-error-correcting codes of length 15, part II – properties”, IEEE Trans. Inform. Theory, 56:6 (2009), 2571–2582 | DOI | MR

[10] Phelps K. T., LeVan M. J., “Kernels of nonlinear Hamming codes”, Des. Codes Cryptography, 6:3 (1995), 247–257 | DOI | MR | Zbl

[11] Phelps K. T., LeVan M. J., “Nonsystematic perfect codes”, SIAM J. Discrete Math., 12:1 (1999), 27–34 | DOI | MR | Zbl

[12] Solov'eva F. I., “Switchings and perfect codes”, Numbers, information and complexity, Kluwer Acad. Publ., Dordrecht, 2000, 311–324 | MR