Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2012_19_4_a5, author = {D. S. Malyshev}, title = {Polynomial solvability of the independent set problem for one class of graphs with small diameter}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {66--72}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a5/} }
TY - JOUR AU - D. S. Malyshev TI - Polynomial solvability of the independent set problem for one class of graphs with small diameter JO - Diskretnyj analiz i issledovanie operacij PY - 2012 SP - 66 EP - 72 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2012_19_4_a5/ LA - ru ID - DA_2012_19_4_a5 ER -
D. S. Malyshev. Polynomial solvability of the independent set problem for one class of graphs with small diameter. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 66-72. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a5/
[1] Arbib C., Mosca R., “On $(P_5, diamond)$-free graphs”, Discrete Math., 250 (2002), 1–22 | DOI | MR | Zbl
[2] Brandstadt A., Mosca R., “On the structure and stability number of $P_5$- and co-chair-free graphs”, Discrete Appl. Math., 132 (2003), 47–65 | DOI | MR
[3] Brandstadt A., Le H.-O., Mosca R., “Chordal co-gem-free and $(P_5, gem)$-free graphs have bounded clique-width”, Discrete Appl. Math., 145:2 (2005), 232 | DOI | MR
[4] Lozin V., Mosca R., “Maximum independent sets in subclasses of $P_5$-free graphs”, Inf. Process. Lett., 109:6 (2009), 319–324 | DOI | MR | Zbl
[5] Minty G., “On maximal independent sets of vertices in claw-free graphs”, J. Comb. Theory Ser. B, 28 (1980), 284–304 | DOI | MR | Zbl
[6] Mosca R., “Polynomial algorithms for the maximum stable set problem on particular classes of $P_5$-free graphs”, Inf. Process. Lett., 61:3 (1997), 137–143 | DOI | MR
[7] Mosca R., “Some results on maximum stable sets in certain $P_5$-free graphs”, Discrete Appl. Math., 132 (2003), 175–183 | DOI | MR | Zbl
[8] Mosca R., “Some observations on maximum weight stable sets in certain $P$”, Eur. J. Oper. Res., 184:3 (2008), 849–859 | DOI | MR | Zbl
[9] Murphy O., “Computing independent sets in graphs with large girth”, Discrete Appl. Math., 35 (1992), 167–170 | DOI | MR | Zbl
[10] Simone C. D., Mosca R., “Stable set and clique polytopes of $(P_5, gem)$-free graphs”, Discrete Math., 307:22 (2007), 2661–2670 | DOI | MR | Zbl