Polynomial solvability of the independent set problem for one class of graphs with small diameter
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A constructive approach to forming new cases in the family of hereditary parts of the set ${\mathcal Free}(\{P_5,C_5\})$ with polynomial-time solvability of the independent set problem is considered. We prove that if this problem is polynomial-time solvable in the class ${\mathcal Free}(\{P_5,C_5,G\})$ then for any graph $H$ which can inductively be obtained from $G$ by means of applying addition with $K_1$ or multiplication by $K_1$ to the graph $G$ the problem has the same computational status in ${\mathcal Free}(\{P_5,C_5,H\})$. Bibliogr. 10.
Keywords: the independent set problem, computational complexity
Mots-clés : polynomial algorithm.
@article{DA_2012_19_4_a5,
     author = {D. S. Malyshev},
     title = {Polynomial solvability of the independent set problem for one class of graphs with small diameter},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {66--72},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a5/}
}
TY  - JOUR
AU  - D. S. Malyshev
TI  - Polynomial solvability of the independent set problem for one class of graphs with small diameter
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 66
EP  - 72
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_4_a5/
LA  - ru
ID  - DA_2012_19_4_a5
ER  - 
%0 Journal Article
%A D. S. Malyshev
%T Polynomial solvability of the independent set problem for one class of graphs with small diameter
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 66-72
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_4_a5/
%G ru
%F DA_2012_19_4_a5
D. S. Malyshev. Polynomial solvability of the independent set problem for one class of graphs with small diameter. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 66-72. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a5/

[1] Arbib C., Mosca R., “On $(P_5, diamond)$-free graphs”, Discrete Math., 250 (2002), 1–22 | DOI | MR | Zbl

[2] Brandstadt A., Mosca R., “On the structure and stability number of $P_5$- and co-chair-free graphs”, Discrete Appl. Math., 132 (2003), 47–65 | DOI | MR

[3] Brandstadt A., Le H.-O., Mosca R., “Chordal co-gem-free and $(P_5, gem)$-free graphs have bounded clique-width”, Discrete Appl. Math., 145:2 (2005), 232 | DOI | MR

[4] Lozin V., Mosca R., “Maximum independent sets in subclasses of $P_5$-free graphs”, Inf. Process. Lett., 109:6 (2009), 319–324 | DOI | MR | Zbl

[5] Minty G., “On maximal independent sets of vertices in claw-free graphs”, J. Comb. Theory Ser. B, 28 (1980), 284–304 | DOI | MR | Zbl

[6] Mosca R., “Polynomial algorithms for the maximum stable set problem on particular classes of $P_5$-free graphs”, Inf. Process. Lett., 61:3 (1997), 137–143 | DOI | MR

[7] Mosca R., “Some results on maximum stable sets in certain $P_5$-free graphs”, Discrete Appl. Math., 132 (2003), 175–183 | DOI | MR | Zbl

[8] Mosca R., “Some observations on maximum weight stable sets in certain $P$”, Eur. J. Oper. Res., 184:3 (2008), 849–859 | DOI | MR | Zbl

[9] Murphy O., “Computing independent sets in graphs with large girth”, Discrete Appl. Math., 35 (1992), 167–170 | DOI | MR | Zbl

[10] Simone C. D., Mosca R., “Stable set and clique polytopes of $(P_5, gem)$-free graphs”, Discrete Math., 307:22 (2007), 2661–2670 | DOI | MR | Zbl