Polynomial solvability of the independent set problem for one class of graphs with small diameter
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 66-72
Voir la notice de l'article provenant de la source Math-Net.Ru
A constructive approach to forming new cases in the family of hereditary parts of the set ${\mathcal Free}(\{P_5,C_5\})$ with polynomial-time solvability of the independent set problem is considered. We prove that if this problem is polynomial-time solvable in the class ${\mathcal Free}(\{P_5,C_5,G\})$ then for any graph $H$ which can inductively be obtained from $G$ by means of applying addition with $K_1$ or multiplication by $K_1$ to the graph $G$ the problem has the same computational status in ${\mathcal Free}(\{P_5,C_5,H\})$. Bibliogr. 10.
Keywords:
the independent set problem, computational complexity
Mots-clés : polynomial algorithm.
Mots-clés : polynomial algorithm.
@article{DA_2012_19_4_a5,
author = {D. S. Malyshev},
title = {Polynomial solvability of the independent set problem for one class of graphs with small diameter},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {66--72},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a5/}
}
TY - JOUR AU - D. S. Malyshev TI - Polynomial solvability of the independent set problem for one class of graphs with small diameter JO - Diskretnyj analiz i issledovanie operacij PY - 2012 SP - 66 EP - 72 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2012_19_4_a5/ LA - ru ID - DA_2012_19_4_a5 ER -
D. S. Malyshev. Polynomial solvability of the independent set problem for one class of graphs with small diameter. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 66-72. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a5/