Perfect multiple coverings of hypercube
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 60-65

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $C$ of graph vertices is called a perfect $k$-multiple covering with a radius $r$ if every vertex of this graph is within distance $r$ from exactly $k$ vertices of $C$. We give a criterion based on parameters of a perfect coloring. This criterion determines whether the perfect coloring is a perfect multiple covering with fixed radius $r\geq1$ of some multiplicity. Bibliogr. 13.
Mots-clés : hypercube
Keywords: perfect coloring, perfect code, perfect multiple coverings.
@article{DA_2012_19_4_a4,
     author = {K. V. Vorob'ev},
     title = {Perfect multiple coverings of hypercube},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {60--65},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a4/}
}
TY  - JOUR
AU  - K. V. Vorob'ev
TI  - Perfect multiple coverings of hypercube
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 60
EP  - 65
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_4_a4/
LA  - ru
ID  - DA_2012_19_4_a4
ER  - 
%0 Journal Article
%A K. V. Vorob'ev
%T Perfect multiple coverings of hypercube
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 60-65
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_4_a4/
%G ru
%F DA_2012_19_4_a4
K. V. Vorob'ev. Perfect multiple coverings of hypercube. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 60-65. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a4/