König graphs with respect to $3$-paths
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 3-14
Cet article a éte moissonné depuis la source Math-Net.Ru
We characterize the graphs whose each induced subgraph has the property: the packing number of induced $3$-paths is equal to the corresponding vertex cover number. Ill. 2, bibliogr. 4.
Keywords:
subgraph packing, subgraph vertex covering, König graph, $3$-path, forbidden subgraph.
@article{DA_2012_19_4_a0,
author = {V. E. Alekseev and D. B. Mokeev},
title = {K\"onig graphs with respect to $3$-paths},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {3--14},
year = {2012},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a0/}
}
V. E. Alekseev; D. B. Mokeev. König graphs with respect to $3$-paths. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a0/
[1] Ding G., Xu Z., Zang W., “Packing cycles in graphs. II”, J. Comb. Theory Ser. B, 87 (2003), 244–253 | DOI | MR | Zbl
[2] Grötschel M., Lovász L., Schrijver A., Geometric algorithms and combinatorial optimization, Springer-Verl., Berlin–Heidelberg, 1993, 362 pp. | MR
[3] Hell P., “Graph packing”, Electron. Notes Discrete Math., 5 (2000), 170–173 | DOI
[4] Yuster R., “Combinatorial and computational aspects of graph packing and graph decomposition”, Comput. Sci. Rev., 1 (2007), 12–26 | DOI