K\"onig graphs with respect to $3$-paths
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize the graphs whose each induced subgraph has the property: the packing number of induced $3$-paths is equal to the corresponding vertex cover number. Ill. 2, bibliogr. 4.
Keywords: subgraph packing, subgraph vertex covering, König graph, $3$-path, forbidden subgraph.
@article{DA_2012_19_4_a0,
     author = {V. E. Alekseev and D. B. Mokeev},
     title = {K\"onig graphs with respect to $3$-paths},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_4_a0/}
}
TY  - JOUR
AU  - V. E. Alekseev
AU  - D. B. Mokeev
TI  - K\"onig graphs with respect to $3$-paths
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 3
EP  - 14
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_4_a0/
LA  - ru
ID  - DA_2012_19_4_a0
ER  - 
%0 Journal Article
%A V. E. Alekseev
%A D. B. Mokeev
%T K\"onig graphs with respect to $3$-paths
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 3-14
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_4_a0/
%G ru
%F DA_2012_19_4_a0
V. E. Alekseev; D. B. Mokeev. K\"onig graphs with respect to $3$-paths. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/DA_2012_19_4_a0/

[1] Ding G., Xu Z., Zang W., “Packing cycles in graphs. II”, J. Comb. Theory Ser. B, 87 (2003), 244–253 | DOI | MR | Zbl

[2] Grötschel M., Lovász L., Schrijver A., Geometric algorithms and combinatorial optimization, Springer-Verl., Berlin–Heidelberg, 1993, 362 pp. | MR

[3] Hell P., “Graph packing”, Electron. Notes Discrete Math., 5 (2000), 170–173 | DOI

[4] Yuster R., “Combinatorial and computational aspects of graph packing and graph decomposition”, Comput. Sci. Rev., 1 (2007), 12–26 | DOI