Approximation scheme for one problem of a~vector subset choice
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 2, pp. 92-100
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the following clustering problem: in a given vector set to find a vector subset of cardinality $k$ with the minimal quadratic deviation from its mean. The distances between vectors are defined by the Euclidean metric. We propose an approximation scheme (PTAS) that solves this problem with an arbitrary relative error $\varepsilon$ in time $O(n^{2/\varepsilon+1}(9/\varepsilon)^{3/\varepsilon d})$, where $n$ is the number of vectors in the original set and $d$ is the space dimension. Ill. 1, bibliogr. 4.
Keywords:
vector subset choice, cluster analysis, approximation scheme, approximation algorithm.
@article{DA_2012_19_2_a6,
author = {V. V. Shenmaier},
title = {Approximation scheme for one problem of a~vector subset choice},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {92--100},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2012_19_2_a6/}
}
V. V. Shenmaier. Approximation scheme for one problem of a~vector subset choice. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 2, pp. 92-100. http://geodesic.mathdoc.fr/item/DA_2012_19_2_a6/