Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2012_19_2_a4, author = {V. N. Potapov}, title = {Construction of {Hamiltonian} cycles with a~given range of directions of edges in the {Boolean} $n$-dimensional cube}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {75--83}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2012_19_2_a4/} }
TY - JOUR AU - V. N. Potapov TI - Construction of Hamiltonian cycles with a~given range of directions of edges in the Boolean $n$-dimensional cube JO - Diskretnyj analiz i issledovanie operacij PY - 2012 SP - 75 EP - 83 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2012_19_2_a4/ LA - ru ID - DA_2012_19_2_a4 ER -
%0 Journal Article %A V. N. Potapov %T Construction of Hamiltonian cycles with a~given range of directions of edges in the Boolean $n$-dimensional cube %J Diskretnyj analiz i issledovanie operacij %D 2012 %P 75-83 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2012_19_2_a4/ %G ru %F DA_2012_19_2_a4
V. N. Potapov. Construction of Hamiltonian cycles with a~given range of directions of edges in the Boolean $n$-dimensional cube. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 2, pp. 75-83. http://geodesic.mathdoc.fr/item/DA_2012_19_2_a4/
[1] Perezhogin A. L., Potapov V. N., “O chisle gamiltonovykh tsiklov v bulevom kube”, Diskret. analiz i issled. operatsii. Ser. 1, 8:2 (2001), 52–62 | MR | Zbl
[2] Perezhogin A. L., Potapov V. N., “O covershennykh parosochetaniyakh v dvoichnom kube”, Diskretnye modeli v teorii upravlyayuschikh sistem, Tr. VII mezhdunar. konf. (Pokrovskoe, 4–6 marta 2006 g.), MAKS Press, M., 2006, 272–277
[3] Perezhogin A. L., “Ob avtomorfizmakh tsiklov v $n$-mernom bulevom kube”, Diskret. analiz i issled. operatsii. Ser. 1, 14:3 (2007), 67–79 | MR | Zbl
[4] Potapov V. N., “O spektrakh gamiltonovykh tsiklov v bulevom $n$-kube”, Mat. XVII mezhdunar. shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem” im. akademika O. B. Lupanova (Novosibirsk, 27 oktyabrya – 1 noyabrya 2008 g.), In-t matematiki SO RAN, Novosibirsk, 2008, 137–140
[5] Bhat G. S., Savage C. D., “Balanced Gray codes”, Electron. J. Comb., 3 (1996), Research Paper 25 | MR | Zbl
[6] Feder T., Subi C., “Nearly tight bounds on the number of Hamiltonian circuits of the hypercube and generalizations”, Inform. Process. Lett., 109:5 (2009), 267–272 | DOI | MR | Zbl
[7] Fink J., “Perfect matchings extend to Hamilton cycles in hypercubes”, J. Comb. Theory Ser. B, 97:6 (2007), 1074–1076 | DOI | MR | Zbl
[8] Knuth D. E., The art of computer programming, v. 4, Addison–Wesley, New-Jersey, 2009, 944 pp. | MR | Zbl
[9] Kreweras G., “Matchings and Hamiltonian cycles on hypercubes”, Bull. Inst. Comb. Appl., 16 (1996), 87–91 | MR | Zbl
[10] Suparta I. N., “A simple proof for the existence of exponentially balanced Gray codes”, Electron. J. Comb., 12 (2005), Note 19 | MR