Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2012_19_2_a1, author = {I. A. Davydov}, title = {Tabu search for the discrete $(r|p)$-centroid problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {19--40}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2012_19_2_a1/} }
I. A. Davydov. Tabu search for the discrete $(r|p)$-centroid problem. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 2, pp. 19-40. http://geodesic.mathdoc.fr/item/DA_2012_19_2_a1/
[1] Alekseeva E. V., Kochetova N. A., “Verkhnie i nizhnie granitsy dlya konkurentnoi zadachi o $p$-mediane”, Tr. XIV-i Baikalskoi mezhdunar. shkoly-seminara “Metody optimizatsii i ikh prilozheniya”, v. 1, RIO IDSTU SO RAN, Irkutsk, 2008, 563–569
[2] Goncharov E. N., Kochetov Yu. A., “Veroyatnostnyi poisk s zapretami dlya diskretnykh zadach bezuslovnoi optimizatsii”, Diskret. analiz i issled. operatsii. Ser. 2, 9:2 (2002), 13–30 | MR | Zbl
[3] Kochetov Yu. A., Paschenko M. G., Plyasunov A. V., “O slozhnosti lokalnogo poiska v zadache o $p$-mediane”, Diskret. analiz i issled. operatsii. Ser. 2, 12:2 (2005), 44–71 | MR | Zbl
[4] Alekseeva E., Kochetova N., Kochetov Yu., Plyasunov A., “A hybrid memetic algorithm for the competitive $p$-median problem”, Proc. INCOM (Moscow, Russia, June 3–5, 2009), ICS RAS Publ., Moscow, 2009, 1516–1520
[5] Alekseeva E., Kochetov Yu., Plyasunov A., “Complexity of local search for the $p$-median problem”, Eur. J. Oper. Res., 191 (2008), 736–752 | DOI | MR | Zbl
[6] Alekseeva E. V., Kochetova N. A., Kochetov Yu. A., Plyasunov A. V., “A heuristic and exact methods for the discrete $(r|p)$-centroid problem”, Evolutionary computation in combinatorial optimization, Proc. 10th Eur. Conf. EvoCOP 2010, Istanbul, Turkey, April 7–9, 2010, 6022, Springer-Verl., Berlin, 2010, 11–22
[7] Barahona F., Chudak F. A., “Near-optimal solutions to large-scale facility location problems”, Discrete Optimization, 2 (2005), 35–50 | DOI | MR | Zbl
[8] Benati S., Laporte G., “Tabu search algorithms for the ($r|X_p$)-medianoid and ($r|p$)-centroid problems”, Locat. Sci., 2:2 (1994), 193–204 | Zbl
[9] Bhadury J., Eiselt Y., Jaramillo J., “An alternating heuristic for medianoid and centroid problems in the plane”, Comput. Oper. Res., 30 (2003), 553–565 | DOI | MR | Zbl
[10] Drezner T., Eiselt H. A., “Consumers in competitive location models”, Facility location. Applications and theory, Springer-Verl., Berlin, 2004, 151–178 | MR
[11] Frangeoni A., “About Lagrangian methods in integer optimization”, Ann. Oper. Res., 139 (2005), 163–193 | DOI | MR
[12] Geoffrion A. M., “Lagrangian relaxation for integer programming”, Math. Program. Study Ser., 2 (1974), 82–114 | DOI | MR | Zbl
[13] Glover F., Laguna M., Tabu search, Kluwer Acad. Publ., Boston, 1997, 408 pp. | MR | Zbl
[14] Guinard M., “Lagrangian relaxation”, TOP, 11 (2003), 215–228 | DOI
[15] Hakimi S. L., “Locations with spatial interactions: competitive locations and games”, Discrete Locat. Theory, Wiley, New York, 1990, 439–478 | MR
[16] Held M., Wolfe P., Crowder H. P., “Validation of subgradient optimization”, Math. Program., 6:1 (1974), 62–88 | DOI | MR | Zbl
[17] Kochetov Yu., Kononov A., Plyasunov A., “Competitive facility location models”, Comput. Math. Math. Physics, 49:6 (2009), 994–1009 | DOI | MR | Zbl
[18] Lemaréchal C., “Lagrangian relaxation”, Computational combinatorial optimization, Springer-Verl., Heidelberg, 2001, 115–160 | MR
[19] Noltemeier H., Spoerhase J., Wirth H.-C., “Multiple voting location and single voting location on trees”, Eur. J. Oper. Res., 181 (2007), 654–667 | DOI | MR | Zbl
[20] Poljak B. T., “Subgradient methods: a survey of Soviet research”, Nonsmooth optimization, IIASA Proc. Ser., 3, 1977, 5–30 | MR
[21] Shor N. Z., Minimization methods for non-differentiable functions, Springer-Verl., New York, 1985, 162 pp. | MR