Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2012_19_1_a5, author = {D. S. Malyshev}, title = {The complexity analysis of the edge-ranking problem for hereditary graph classes with at most three prohibitions}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {74--96}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2012_19_1_a5/} }
TY - JOUR AU - D. S. Malyshev TI - The complexity analysis of the edge-ranking problem for hereditary graph classes with at most three prohibitions JO - Diskretnyj analiz i issledovanie operacij PY - 2012 SP - 74 EP - 96 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2012_19_1_a5/ LA - ru ID - DA_2012_19_1_a5 ER -
%0 Journal Article %A D. S. Malyshev %T The complexity analysis of the edge-ranking problem for hereditary graph classes with at most three prohibitions %J Diskretnyj analiz i issledovanie operacij %D 2012 %P 74-96 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2012_19_1_a5/ %G ru %F DA_2012_19_1_a5
D. S. Malyshev. The complexity analysis of the edge-ranking problem for hereditary graph classes with at most three prohibitions. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 1, pp. 74-96. http://geodesic.mathdoc.fr/item/DA_2012_19_1_a5/
[1] Alekseev V. E., Malyshev D. S., “Kriterii granichnosti i ego primeneniya”, Diskret. analiz i issled. operatsii, 15:6 (2008), 3–10 | MR
[2] Korobitsyn D. V., “O slozhnosti opredeleniya chisla dominirovaniya v monogennykh klassakh grafov”, Diskret. matematika, 2:3 (1990), 90–96 | MR | Zbl
[3] Malyshev D. S., “O minimalnykh slozhnykh klassakh grafov”, Diskret. analiz i issled. operatsii, 16:6 (2009), 43–51 | MR
[4] Malyshev D. S., “O minimalnykh slozhnykh elementakh reshetki nasledstvennykh klassov grafov”, Mat. VII molodëzh. nauchn. shkoly po diskretnoi matematike i eë prilozheniyam (Moskva, 18–23 maya 2009 g.), chast II, Izd-vo IPM RAN, M., 2009, 12–17
[5] Malyshev D. S., Issledovanie granits effektivnoi razreshimosti v semeistve nasledstvennykh klassov grafov, Dis. $\dots$ kand. fiz.-mat. nauk, Nizhegorodskii gos. un-t, Nizhnii Novgorod, 2009, 113 pp.
[6] Malyshev D. S., “Posledovatelnye minimumy reshëtki nasledstvennykh klassov grafov dlya zadachi o rëbernom spiskovom ranzhirovanii”, Vestn. Nizhegorodskogo un-ta im. N. I. Lobachevskogo, 4:1 (2010), 133–136
[7] Malyshev D. S., “Minimalnye slozhnye klassy grafov dlya zadachi o rëbernom spiskovom ranzhirovanii”, Diskret. analiz i issled. operatsii, 18:1 (2011), 70–76 | MR
[8] Malyshev D. S., Alekseev V. E., “Granichnye klassy dlya zadach o spiskovom ranzhirovanii otnositelno lesov”, Diskret. analiz i issled. operatsii, 18:6 (2011), 61–70
[9] Alekseev V. E., “On easy and hard hereditary classes of graphs with respect to the independent set problem”, Discrete Appl. Math., 132 (2004), 17–26 | DOI | MR
[10] Dereniowski D., “The complexity of list ranking of trees”, Ars Combin., 86 (2008), 97–114 | MR | Zbl
[11] Ding G., “Subgraphs and well-quasi-ordering”, J. Graph Theory, 16 (1992), 489–502 | DOI | MR | Zbl
[12] Distel R., Graph Theory, Springer-Verl., New York, 2000, 322 pp. | MR
[13] Kral D., Kratochvil J., Tuza T., Woeginger G., “Complexity of coloring of graphs without forbidden induced subgraphs”, Graph-theoretic concepts in computer science, Proc. 27th Int. Workshop (Boltenhagen, Germany, June 14–16, 2001), Lect. Notes Comput. Sci., 2204, Springer-Verl., Berlin–Heidelberg, 2001, 254–262 | MR | Zbl
[14] Lozin V. V., “A decidability results for the dominating set problem”, Theor. Comput. Sci., 411:44–46, October (2010), 4023–4027 | DOI | MR