Enumeration of bent functions on the minimal distance from the quadratic bent function
Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 1, pp. 41-58

Voir la notice de l'article provenant de la source Math-Net.Ru

Constructing bent functions on the minimal distance from the quadratic bent function is studied. All such bent functions in $2k$ variables are obtained and it is shown that the number of them is equal to $2^k(2^1+1)\dots(2^k+1)$. A lower bound of the number of bent functions on the minimal distance from a Maiorana–McFarland bent function is given. Tab. 1, bibliogr. 9.
Keywords: bent function, the minimal distance, quadratic bent function.
@article{DA_2012_19_1_a3,
     author = {N. A. Kolomeec},
     title = {Enumeration of bent functions on the minimal distance from the quadratic bent function},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {41--58},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2012_19_1_a3/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - Enumeration of bent functions on the minimal distance from the quadratic bent function
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2012
SP  - 41
EP  - 58
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2012_19_1_a3/
LA  - ru
ID  - DA_2012_19_1_a3
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T Enumeration of bent functions on the minimal distance from the quadratic bent function
%J Diskretnyj analiz i issledovanie operacij
%D 2012
%P 41-58
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2012_19_1_a3/
%G ru
%F DA_2012_19_1_a3
N. A. Kolomeec. Enumeration of bent functions on the minimal distance from the quadratic bent function. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 1, pp. 41-58. http://geodesic.mathdoc.fr/item/DA_2012_19_1_a3/