Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2012_19_1_a1, author = {E. Kh. Gimadi and E. V. Ivonina}, title = {Approximation algorithms for maximum-weight problem of two-peripatetic salesmen}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {17--32}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2012_19_1_a1/} }
TY - JOUR AU - E. Kh. Gimadi AU - E. V. Ivonina TI - Approximation algorithms for maximum-weight problem of two-peripatetic salesmen JO - Diskretnyj analiz i issledovanie operacij PY - 2012 SP - 17 EP - 32 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2012_19_1_a1/ LA - ru ID - DA_2012_19_1_a1 ER -
E. Kh. Gimadi; E. V. Ivonina. Approximation algorithms for maximum-weight problem of two-peripatetic salesmen. Diskretnyj analiz i issledovanie operacij, Tome 19 (2012) no. 1, pp. 17-32. http://geodesic.mathdoc.fr/item/DA_2012_19_1_a1/
[1] Ageev A. A., Baburin A. E., Gimadi E. Kh., “Polinomialnyi algoritm s otsenkoi 3/4 dlya nakhozhdeniya dvukh rëberno neperesekayuschikhsya gamiltonovykh tsiklov maksimalnogo summarnogo vesa”, Diskret. analiz i issled. operatsii. Ser. 1, 13:2 (2006), 11–20 | MR
[2] Gimadi E. Kh., Glazkov Yu. V., Glebov A. N., “Priblizhënnye algoritmy resheniya zadachi o dvukh kommivoyazhërakh v polnom grafe s vesami rëber 1 i 2”, Diskret. analiz i issled. operatsii. Ser. 2, 14:2 (2007), 41–61 | MR
[3] Glebov A. N., Zambalaeva D. Zh., “Zadacha o dvukh kommivoyazhërakh na minimum v polnom grafe s razlichnymi vesovymi funktsiyami”, Diskret. analiz i issled. operatsii, 18:4 (2011), 17–48
[4] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR
[5] Serdyukov A. I., “Algoritm s otsenkoi dlya zadachi kommivoyazhëra na maksimum”, Upravlyaemye sistemy, 25, 1984, 80–86 | MR | Zbl
[6] Baburin A. E., Croce F. D., Gimadi E. Kh., Glazkov Y. V., Paschos V. Th., “Approximation algorithms for the 2-peripatetic salesman problem with edge weights 1 and 2”, Discrete Appl. Math., 157:9 (2009), 1988–1992 | DOI | MR | Zbl
[7] De Kort J. B. J. M., “A branch and bound algorithm for symmetric 2-peripatetic salesman problems”, Eur. J. Oper. Res., 10:2 (1993), 229–243 | DOI | MR | Zbl
[8] Gabow H. N., “An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems”, Proc. 15th Ann. ACM Symp. Theory of Computing (Boston, April 25–27, 1983), ACM Press, New York, 1983, 448–456
[9] Glebov A. N., Gordeeva A. V., Zambalaeva D. Zh., “7/5-Approximation algorithm for a 2-peripatetic salesman problem on minimum with different weight functions valued 1 and 2”, Discrete Appl. Math. (to appear)
[10] Gutin G., Punnen A. P., The traveling salesman problem and its variations, Kluwer Acad. Publ., Boston–London–Dordrecht, 2002, 830 pp. | MR
[11] Krarup J., “The peripatetic salesman and some related unsolved problems”, Combinatorial programming: methods and applications, Proc. NATO Advanced Study Inst. (Versailles, 1974), Kluwer Acad. Publ., Reidel–Dordrecht, 1975, 173–178 | MR
[12] Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., Shmoys D. B., The traveling salesman problem: a guided tour of combinatorial optimization, Wiley, Chichester, 1985, 463 pp. | MR | Zbl
[13] Papadimitriou C. H., Yannakakis M., “The traveling salesman problem with distances one and two”, Math. Oper. Res., 18:1 (1993), 1–11 | DOI | MR | Zbl