Boundary classes for the list-ranking problems in subclasses of forests
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 6, pp. 61-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

All boundary classes are found for the graph list-ranking problems (vertex and edge variants) relative to the class of forests. It allows to determine the complexity status of these problems for any hereditary class defined by a finite set of forbidden subgraphs under the class of forests. Bibliogr. 9.
Keywords: computational complexity, boundary class, relative boundary class, list-ranking problem, forest.
@article{DA_2011_18_6_a3,
     author = {D. S. Malyshev and V. E. Alekseev},
     title = {Boundary classes for the list-ranking problems in subclasses of forests},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {61--70},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2011_18_6_a3/}
}
TY  - JOUR
AU  - D. S. Malyshev
AU  - V. E. Alekseev
TI  - Boundary classes for the list-ranking problems in subclasses of forests
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2011
SP  - 61
EP  - 70
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2011_18_6_a3/
LA  - ru
ID  - DA_2011_18_6_a3
ER  - 
%0 Journal Article
%A D. S. Malyshev
%A V. E. Alekseev
%T Boundary classes for the list-ranking problems in subclasses of forests
%J Diskretnyj analiz i issledovanie operacij
%D 2011
%P 61-70
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2011_18_6_a3/
%G ru
%F DA_2011_18_6_a3
D. S. Malyshev; V. E. Alekseev. Boundary classes for the list-ranking problems in subclasses of forests. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 6, pp. 61-70. http://geodesic.mathdoc.fr/item/DA_2011_18_6_a3/

[1] Alekseev V. E., Malyshev D. S., “Kriterii granichnosti i ego primeneniya”, Diskret. analiz i issled. operatsii, 15:6 (2008), 3–10 | MR

[2] Malyshev D. S., “O minimalnykh slozhnykh klassakh grafov”, Diskret. analiz i issled. operatsii, 16:6 (2009), 43–51 | MR

[3] Malyshev D. S., “O minimalnykh slozhnykh elementakh reshetki nasledstvennykh klassov grafov”, Materialy VII molodëzhnoi nauchnoi shkoly po diskretnoi matematike i eë prilozheniyam (Moskva, 18–23 maya 2009 g.), Chast II, Izd-vo IPM RAN, M., 2009, 12–17

[4] Malyshev D. S., Issledovanie granits effektivnoi razreshimosti v semeistve nasledstvennykh klassov grafov, Dis. $\dots$ kand. fiz-mat. nauk, NNGU, Nizhnii Novgorod, 2009, 113 pp.

[5] Alekseev V. E., “On easy and hard hereditary classes of graphs with respect to the independent set problem”, Discrete Appl. Math., 132 (2004), 17–26 | DOI | MR

[6] Alekseev V. E., Boliac R., Korobitsyn D. V., Lozin V. V., “NP-hard graph problems and boundary classes of graphs”, Theor. Comput. Sci., 389 (2007), 219–236 | DOI | MR | Zbl

[7] Dereniowski D., “The complexity of list ranking of trees”, Ars Comb., 86 (2008), 97–114 | MR | Zbl

[8] Jamison R. E., “Coloring parameters associated with rankings of graphs”, Congr. Numerantium, 164 (2003), 111–127 | MR | Zbl

[9] Lozin V. V., “Boundary classes of planar graphs”, Comb. Probab. Comput., 17 (2008), 287–295 | DOI | MR | Zbl