Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2011_18_5_a3, author = {A. V. Eremeev and Ju. V. Kovalenko}, title = {On scheduling with technology based machines grouping}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {54--79}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2011_18_5_a3/} }
A. V. Eremeev; Ju. V. Kovalenko. On scheduling with technology based machines grouping. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 5, pp. 54-79. http://geodesic.mathdoc.fr/item/DA_2011_18_5_a3/
[1] Borisovskii P. A., “Geneticheskii algoritm dlya odnoi zadachi sostavleniya proizvodstvennogo raspisaniya s perenaladkami”, Tr. XIV Baikalskoi mezhdunar. shkoly-seminara “Metody optimizatsii i ikh prilozheniya”, v. 4, ISEM SO RAN, Irkutsk, 2008, 166–173
[2] Gmurman V. E., Teoriya veroyatnostei i matematicheskaya statistika, Uch. pos., Vysshee obrazovanie, M., 2006, 479 pp.
[3] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR
[4] Ilev V. P., “Otsenki pogreshnosti priblizhënnogo algoritma dlya zadachi o raskraske grafa”, Tr. XIII Baikalskoi mezhdunar. shkoly-seminara "Metody optimizatsii i ikh prilozheniya, v. 1, ISEM SO RAN, Irkutsk, 2005, 491–495
[5] Kitaev A., Shen A., Vyalyi M., Klassicheskie i kvantovye vychisleniya, MTsNMO, CheRo, M., 1999, 192 pp.
[6] Kovalenko Yu. V., Model s nepreryvnym predstavleniem vremeni dlya zadachi sostavleniya raspisanii mnogoproduktovogo proizvodstva, Preprint, Cornell University, Cornell, 2011, 8 pp., arXiv: 1105.2437[math.OC]
[7] Rutkovskaya D., Pilinskii M., Rutkovskii L., Neironnye seti, geneticheskie algoritmy i nechëtkie sistemy, Goryachaya liniya–Telekom, M., 2006, 452 pp.
[8] Tanaev V. S., Kovalev M. Ya., Shafranskii Ya. M., Teoriya raspisanii. Gruppovye tekhnologii, In-t tekhn. kibernetiki NAN Belarusi, Minsk, 1998, 290 pp.
[9] Khachiyan L. G., “Polinomialnye algoritmy v lineinom programmirovanii”, Dokl. AN SSSR, 244 (1979), 1093–1096 | MR | Zbl
[10] Bianco L., Blazewicz J., Dell'Ohno P., Drozdowski M., “Scheduling multiprocessor tasks on a dynamic configuration of dedicated processors”, Ann. Oper. Res., 58 (1995), 493–517 | DOI | MR | Zbl
[11] Blazewicz J., Dell'Ohno P., Drozdowski M., Speranza M. G., “Scheduling multiprocessor tasks on three dedicated processors”, Inf. Process. Lett., 41 (1992), 275–280 ; “Corrigendum”, Inf. Process. Lett., 49 (1994), 269–270 | DOI | MR | Zbl | MR | Zbl
[12] Borisovsky P. A., Dolgui A., Eremeev A. V., “Genetic algorithms for a supply management problem: MIP-recombination vs greedy decoder”, Eur. J. Oper. Res., 195:3 (2009), 770–779 | DOI | Zbl
[13] Dolgui A., Eremeev A. V., Kovalyov M. Y., Multi-product lot-sizing and scheduling on unrelated parallel machines, Res. Report No 2007-500-011, Ecole des Mines de St.-Etienne, St.-Etienne, 2007, 15 pp.
[14] Drozdowski M., “Scheduling multiprocessor tasks – an overview”, Eur. J. Oper. Res., 94 (1996), 215–230 | DOI | Zbl
[15] Feige U., Kilian J., “Zero knowledge and the chromatic number”, J. Comput. Syst. Sci., 57:2 (1998), 187–199 | DOI | MR | Zbl
[16] Floudas C. A., Kallrath J., Pitz H. J., Shaik M. A., “Production scheduling of a large-scale industrial continuous plant: short-term and medium-term scheduling”, Comp. Chem. Eng., 33 (2009), 670–686 | DOI
[17] Grötschel M., Lovasz L., Schrijver A., “The ellipsoid method and its consequences in combinatorial optimization”, Combinatorica, 1 (1981), 169–197 | DOI | MR
[18] Håstad J., “Clique is hard to approximate within $n^{1-\varepsilon}$”, Acta Math., 182 (1999), 105–142 | DOI | MR
[19] Holland J. H., Adaptation in natural and artificial systems, Univ. Michigan Press, Ann Arbor, 1975, 183 pp. | MR
[20] Hoogeven J. A., van de Velde S. L., Veltman B., “Complexity of scheduling multiprocessor tasks with prespecified processors allocations”, Discrete Appl. Math., 55 (1994), 259–272 | DOI | MR
[21] Ierapetritou M. G., Floudas C. A., “Effective continuous-time formulation for short-term scheduling. I. Multipurpose batch process”, Ind. Eng. Chem. Res., 37 (1998), 4341–4359 | DOI
[22] Itai A., Papadimitriou C. H., Szwarcfiter J. L., “Hamilton paths in grid graphs”, SIAM J. Comput., 11:4 (1982), 676–686 | DOI | MR | Zbl
[23] Jansen K., Porkolab L., “Preemptive scheduling with dedicated processors: applications of fractional graph coloring”, J. Scheduling, 7:1 (2004), 35–48 | DOI | MR
[24] Kubale M., “Preemptive versus nonpreemptive scheduling of biprocessor tasks on dedicated processors”, Eur. J. Oper. Res., 94 (1996), 242–251 | DOI | Zbl
[25] Lin X., Floudas C. A., Modi S., JuhaszN. M., “Continuous-time optimization approach for medium-range production scheduling of a multiproduct batch plant”, Ind. Eng. Chem. Res., 41 (2002), 3884–3906 | DOI
[26] Papadimitriou C. H., Computational complexity, Addison Wesley, Reading, MA, 1994, 540 pp. | MR | Zbl
[27] Reeves C. R., “Genetic algorithms for the operation researcher”, INFORMS J. Comput., 9:3 (1997), 231–250 | DOI | Zbl
[28] Rudolph G., “Finite Markov chain results in evolutionary computation: a tour d'horizon”, Fundam. Inform., 35:1–4 (1998), 67–89 | MR | Zbl